
But, in cognitive science, moral cognition has so
far been very much treated as a private matter

Results

Can causal structure bias causal strength 
perceptions?

Method

N= 320 US and UK residents (122 males) average age = 37.28 years 
(SD = 13.12, range: 18 to 76). 

• The causal structure (Chain vs Common Cause) changes causal intuitions
• Both human participants and Large Language Models (LLMs) deviated from normativity by judging intermediate causes in causal chains as 

more potent than simple causation or Common Causes.
• Variations in LLM hyperparameters revealed that models with higher temperatures, which incorporate more randomness, showed biases similar to 

human judgments.
• Possible explanations:

• “Mechanisms Hypothesis”: middle nodes may be seen as mechanisms for the initial causes (Menzies, 2012). Mechanistic causes are 
preferred over correlational ones (Johnson & Ahn, 2017).

• "Causal Relay Hypothesis" : the strength of the C→B link in a chain is supported by the A→C sequence, indicating that the perceived 
causal strength might be influenced by the support provided by preceding causes in the chain.

•

Causal Strength Judgments in Humans and Large Language Models

• Normatively, the number of a cause’s effects should 
have no influence on its power to create each.

• Dilution (Stephan et al., 2023): A cause’s perceived 
power over an effect decreases with more effects

• Boon-Bane Effect (Sussman et al., 2020): Perceived 
power increases instead if the effects are negative 
(e.g., disease symptoms)

• Assuming interactions among effects may explain the 
discordant findings (Park & Sloman, 2013)

• Findings could be limited to Common Cause nets
• We manipulate network structure to adjudicate 

between the accounts

• Queried GPT3.5-Turbo (OpenAI, 2022), GPT4 (OpenAI, 2023), and 
Luminous Supreme Control (Aleph Alpha, 2023).

• Manipulated temperature to compare deterministic and non-
deterministic responses with human data. 

• Looked for sampling parameters that fit best:
• 1. The human data
• 2. The normative model.
Using Wasserstein Distance to compare distributions

Design: Scenarios within-subject, Structure 
between-subject
Materials: Three scenarios (novel + adapted from 
previous studies): Alien, sex-work, economy

The same variables were used across different 
network structures

• Causal info is shared via language but may also be learned 
by interacting with the world.

• LLMs are trained on language. If they show a bias, 
language must be a vehicle for it. 

• Prior studies show suboptimal LLM causal reasoning (Binz 
& Schulz, 2023; Willig et al., 2022). 

LLMs: Is language the main vehicle for 
deviations from normativity?
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Discussion

Future Work
• Probabilistic manipulation (A→C) in a chain to differentiate between the Mechanisms  and the Causal Relay Hypothesis.
• Asking subjects whether they see the intermediate node in a chain as a mechanism.
• Examining the embedding space for clues to LLM representations that mimic human biases.
• Examining whether exposure to normative Bayesian reasoning could help improve the reliability of AI in domains requiring precise causal judgments.
• Future research should explore if different architectures and training methods result in more, or less biased causal reasoning.
• Studies should examine whether increasing temperature always induces human-like biases in LLM causal reasoning.

Bayesian Agent

p= .014p= .010 p<.0001p<.0001


