Causal Strength Judgments in Humans and Large Language Models

Anita Kushmirir1,2,3, Moritz Willig4, Babak Hemmatian5, Ulrike Hahn1,6, Kristian Kersting1,2,8, Tobias Gerstenberg

1Fraunhofer IKS, Munich 2Munich Center for Mathematical Philosophy 3Forward College, Berlin 4Technical University of Darmstadt 5Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign 6Birkbeck University, London 7Hessian Center for AI 8German Research Center for AI 9Stanford University, Palo Alto

Can causal structure bias causal strength perceptions?

- Normatively, the number of a cause’s effects should have no influence on its power to create each.
- Dilution (Stephan et al., 2023): A cause’s perceived power over an effect decreases with more effects
- Boon-Bane Effect (Sassman et al., 2020): Perceived power increases instead if the effects are negative (e.g., disease symptoms)
- Assuming interactions among effects may explain the discordant findings (Park & Sloman, 2013)
- Findings could be limited to Common Cause nets
- We manipulate network structure to adjudicate between the accounts

Tested Structures

Judgement Predictions of Related Works

Method

Example Scenario

Economy

Adapted from Rehder (2014) for a moderate level of familiarity with the domain.

Chain: High-interest rates lead to more loan defaults, which leads to more inflation.

Common cause (Generative): More loan defaults lead to high-interest rates on the one hand and more inflation on the other.

Common cause (Preventive): More loan defaults prevent low-interest rates on the one hand and prevent retirement investment on the other.

Control (Generative): More loan defaults lead to more inflation.

Control (Preventive): More loan defaults prevent retirement investment.

Human Data

N = 320 US and UK residents (122 males) average age = 37.28 years

SD = 13.11, range: 18 to 76.

LLM Data

- Queried GPT3.5-Turbo (OpenAI, 2022), GPT4 (OpenAI, 2023), and Luminous Supreme Control (Aleph Alpha, 2023).
- Manipulated temperature to compare deterministic and non-deterministic responses with human data.
- Looked for sampling parameters that fit best:
 1. The human data
 2. The normative model.

Using Wasserstein Distance to compare distributions

Results

Preference for Chains Across Temperature Values

Discussion

- The causal structure (Chain vs Common Cause) changes causal intuitions
- Both human participants and Large Language Models (LLMs) deviated from normativity by judging intermediate causes in causal chains as more potent than simple causation or Common Causes.
- Variations in LLM hyperparameters revealed that models with higher temperatures, which incorporate more randomness, showed biases similar to human judgments.
- Possible explanations:
 - “Mechanisms Hypothesis”: middle nodes may be seen as mechanisms for the initial causes (Menzies, 2012). Mechanistic causes are preferred over correlational ones (Johnson & Ahn, 2017).
 - “Causal Relay Hypothesis”: the strength of the C→B link in a chain is supported by the A→C sequence, indicating that the perceived causal strength might be influenced by the support provided by preceding causes in the chain.

Future Work

- Probabilistic manipulation (A→C) in a chain to differentiate between the Mechanisms and the Causal Relay Hypothesis.
- Asking subjects whether they see the intermediate node in a chain as a mechanism.
- Examining the embedding space for clues to LLM representations that mimic human biases.
- Examining whether exposure to normative Bayesian reasoning could help improve the reliability of AI in domains requiring precise causal judgments.
- Future research should explore if different architectures and training methods result in more, or less biased causal reasoning.
- Studies should examine whether increasing temperature always induces human-like biases in LLM causal reasoning.