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Abstract

What shape do people’s mental models take? We hypothesize
that people build causal models that are suited to the task at
hand. These models abstract away information to represent
what matters. To test this idea empirically, we presented par-
ticipants with causal learning paradigms where some features
were outcome-relevant and others weren’t. In Experiment 1,
participants had to learn what objects of different shape and
color made a machine turn on. In Experiment 2, they had to
predict whether blocks sliding down ramps would cross a fin-
ish line. In both experiments, participants made systematic
errors in a surprise test that asked them to recall what they
had seen earlier. The errors people made suggest that they had
built mental models of the task that privileged causally relevant
information. Our results contribute to recent efforts trying to
characterize the important role that causal abstraction plays in
human learning and inference.

Keywords: causality; abstraction; representation; mental
model; intuitive physics.

Introduction
When modeling the world, we can’t account for everything.
So how do we choose what to represent? Here is a sim-
ple idea: we represent what we need. When building men-
tal models of the world, our representations are tailored to
the task at hand, abstracting away much of the information
that’s available in principle. Recent work suggests that peo-
ple’s mental models of the physical world may in important
respects be similar to the kinds of physics engines that are
used in modern day computer games (Kubricht, Holyoak, &
Lu, 2017; Ullman, Spelke, Battaglia, & Tenenbaum, 2017).
These physics-engine-fueled models quantitatively capture
people’s predictions about the future (Battaglia, Hamrick, &
Tenenbaum, 2013; Smith & Vul, 2012), inferences about the
past (Beller, Xu, Linderman, & Gerstenberg, 2022; Smith &
Vul, 2014), and causal judgments about what happened (Ger-
stenberg, Goodman, Lagnado, & Tenenbaum, 2021; Gersten-
berg & Tenenbaum, 2017; Zhou, Smith, Tenenbaum, & Ger-
stenberg, 2022). While encouraging, there is also a sense in
which these models aren’t quite right (Ludwin-Peery, Bram-
ley, Davis, & Gureckis, 2020). For a physics engine to sim-
ulate an object it needs to know its exact location, mass,
shape, friction, etc. However, people’s mental models may
not represent the world at this level of detail (Davis & Marcus,
2016), and they may only mentally simulate some aspects but
not others (Bass, Smith, Bonawitz, & Ullman, 2022).

Abstract causal models
Mental models can be formulated at multiple levels of ab-
straction (Griffiths & Tenenbaum, 2009). While we ulti-
mately have to take actions in continuous space and time, we
often don’t think about the world that way. Instead, our men-
tal models abstract away many of the lower level details (e.g.
Beckers, Eberhardt, & Halpern, 2020; Beckers & Halpern,
2019; Beller, Bennett, & Gerstenberg, 2020; Chalupka, Eber-
hardt, & Perona, 2017; Gerstenberg et al., 2021). How do we
choose the right level of abstraction (Gerstenberg & Stephan,
2021; Halpern & Hitchcock, 2011; Woodward, 2015)?

One proposal from philosophy suggests that the variables
in a model should be ‘proportional’ to one another (Wood-
ward, 2021; Yablo, 1997): cause and effect variables should
be specified at a level of detail that matches. For example,
when representing the relationship between an ordinary light
switch and a light bulb, binary variables will do just fine.
However, to capture the relationship between a dimmer and
a dimmable light bulb, we would want continuous variables
instead. What we wouldn’t want would be a continuous vari-
able for a switch capturing its exact position over time, when
the bulb is only ever on or off. ‘Proportionality’ provides a
useful constraint on specifying the values of variables in a
causal model. However, it doesn’t yet answer the question
of what variables to include. Here, we need to consider the
agent’s goals (Wellen & Danks, 2014).

Goal-dependent mental representations
People’s goals constrain what visual information they attend
to (Maruff, Danckert, Camplin, & Currie, 1999). Because our
cognitive resources are limited, we need to allocate them effi-
ciently (Bates, Lerch, Sims, & Jacobs, 2019; Brady & Tenen-
baum, 2013). For example, when people plan how to navigate
a maze, they build simplified representations that only contain
what matters at a fine level of detail (Ho et al., 2022). When
asked to recall where an obstacle was located, they remem-
ber it well when the obstacle affected their planned route, but
less so when the obstacle didn’t matter for their plan. As Ho
(2019) argue, there is value in abstraction. Good abstractions
help us to learn and transfer that knowledge to new tasks.

Goal-dependent causal models
Prior work on abstraction in causal models has been mostly
theoretical (Beckers & Halpern, 2019; Chalupka et al., 2017).
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Figure 1: Example trial of the ‘prediction task’ in the blicket
experiment (A) and physics experiment (B).

And prior work on goal-dependent representations has fo-
cused on visual attention (Maruff et al., 1999), or planning
in navigation (Ho et al., 2022). Here, we bring these two
strands of research together. We ask whether people build
goal-dependent causal models that are suited to the task at
hand. In Experiment 1, participants perform a simple causal
learning task and, when asked in a surprise test what they
just saw, make systematic memory errors favoring causally
relevant information (see Figure 1a). Experiment 2 fea-
tures a physical prediction task. Again, we find system-
atic errors in a surprise test that are consistent with a goal-
dependent causal model of the task (see Figure 1b). All ex-
periments were pre-registered on the Open Science Frame-
work, including information about the desired sample size,
hypotheses, and statistical analyses. You can access all of
the pre-registrations, data, and materials here: https://
github.com/cicl-stanford/abstract causation

Experiment 1: Causal abstraction of blickets
In this experiment, we use the popular blicket detector
paradigm (see, e.g. Gopnik et al., 2004; Sobel & Kirkham,
2006) to investigate whether people build task-dependent
causal abstractions.

Methods
Participants A total of 482 participants were recruited
through Prolific (age: M = 38, SD = 14; gender: 267 female,
192 male, 12 non-binary, 11 other or no response; race: 368
White, 45 Asian, 30 Black, 27 Multiracial, 2 Hispanic, 1 Na-
tive, 1 White African, and 8 no response) took part in the
four experimental conditions (feedback: N = 124, no feed-
back: N = 118, short: N = 120, conjunctive: N = 120). All
participants were based in the US, fluent in English, and had
approval ratings of at least 95% with 10 or more prior sub-
missions. A target sample size of 120 participants was se-
lected for each of the four conditions, based upon a frequen-
tist power analysis using a significance threshold of p = .05
and a target power of 80%. Participants were compensated
with both a base payment, and a performance bonus based
upon their overall accuracy within the task. The average com-
pensation exceeded $14/hr in each condition.

Procedure The stimuli in this experiment showed a ‘blicket
machine’ with one of four objects placed on top of the ma-

Which of these options shows the image from the last trial, that you just saw?

(a) congruent (b) rule-congruent (c) rule-incongruent (d) incongruent

Figure 2: Experiment 1. In this example of the ‘surprise
test’ the cubes are blickets and the cylinders aren’t. For the
labels, we assume that the black cube was shown last in the
‘prediction task’ (see Figure 1a).

chine: a dark cube, a light cube, a dark cylinder, or a light
cylinder. Figure 2 shows an example of the blicket detec-
tor in action. The machine would ‘turn on’ (as indicated by
the sun turning yellow) whenever blickets were placed atop
the machine. The diagnostic feature of a ‘blicket’ was either
its shape or color, and was counterbalanced between partici-
pants. In Figure 2, shape is the diagnostic feature, while color
is irrelevant. Here, cubes (of any color) are blickets while
cylinders (of any color) are not. For other participants, color
was diagnostic of blickets, while shape was irrelevant.

At the beginning of the experiment, participants were fa-
miliarized with the ‘blicket machine’ and informed that some
but not all objects would make the machine turn on. Partici-
pants were then given a brief comprehension check to ensure
that they understood how the machine worked. The main
body of the experiment consisted of a set of ‘prediction tri-
als’. In each trial, participants were presented with an image
of a blicket machine, with one of the four objects placed atop
the machine like shown in Figure 1a. The status of the ma-
chine (whether it was ‘on’ or ‘off’) was hidden by a white
occluder. Participants were asked to indicate whether the ma-
chine was ‘on’ or ‘off’. After responding, the occluder was
removed, the status of the machine revealed, and participants
received feedback about whether their response was correct.
Participants received a bonus for each correct response on a
‘prediction trial’.

After the last ‘prediction trial’, participants viewed a ‘sur-
prise test’ asking them to recall which of the four objects they
had seen in the preceding trial. Participants clicked on the im-
age in a 2×2 grid that they believed they had seen last.

Design The experiment had four conditions. In the ‘feed-
back’ condition, participants received feedback on the final
prediction trial, indicating whether they responded correctly,
before being presented with the surprise test. In the ‘no feed-
back’ condition, participants didn’t receive feedback on the
final trial. In the ‘short’ condition, participants only had two
prediction trials with the second one followed by the surprise
test. The other conditions featured 16 prediction trials. Fi-
nally, in the ‘conjunctive’ condition, the blicket detector only
turned on if two features were present (e.g. only black cubes
were blickets). In each condition, we counterbalanced what
features were causally relevant for the outcome.

https://github.com/cicl-stanford/abstract_causation
https://github.com/cicl-stanford/abstract_causation
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(d) conjunctive condition

Figure 3: Experiment 1. Accuracy in the prediction task.
Lines show logistic regression model fits. Error bars in all
figures show 95% bootstrapped confidence intervals.

Predictions
Figure 2 shows the different response options and the corre-
sponding labels we give to each option. We call responses
‘congruent’ when they correctly identify the object from the
preceding trial (here, the black cube). Responses are ‘rule-
congruent’ when they would have led to the same outcome as
the correct response. Here, the light cube is rule-congruent
because it is also a blicket. The black cylinder is ‘rule-
incongruent’ because it shares its color with the correct re-
sponse, but that feature is not causally relevant. We call the
white cylinder ‘incongruent’ because it shares neither color
nor shape with the correct response. Note that in the conjunc-
tive condition, because only one object is a blicket, there are
two partially matching responses (both the black cylinder and
the light cube), and one incongruent option.

We predicted that, as participants learned what distin-
guishes blickets from non-blickets, their representations of
the stimuli would begin to privilege the causally relevant in-
formation. For example, when the shape mattered and the
color didn’t, participants would be more likely to encode and
remember the shape of the object than its color. As a con-
sequence, if participants made a mistake in recalling what
they just saw, they would be more likely to select the rule-
congruent rather than the rule-incongruent option (and least
likely to select the incongruent option). In the ‘feedback’ con-
dition, one might worry that participants would only remem-
ber the feedback they received (e.g. that the blicket detector
was on) but not the object they saw. This could explain why
they would be more likely to choose the rule-congruent than
the rule-incongruent option. To address this, we also included
a ‘no feedback’ condition where participants didn’t get feed-
back on the final prediction trial before the surprise test. If
feedback was driving the effect, we would expect any differ-
ence in selections to disappear in that condition. We predicted
that, in the ‘short’ condition, participants would not have
enough evidence to learn the relevant causal structure, and
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(d) conjunctive condition

Figure 4: Experiment 1. Participants’ selections in the ‘sur-
prise test’. Here, we assume that the object shown in the last
prediction trial was a black cube, and that shape but not color
is diagnostic of ‘blickets’ (see Figure 2).

would therefore not have a privileged memory of the causally
relevant feature. Thus, we predicted that they would be just
as likely to select the rule-congruent and rule-incongruent op-
tion. Similarly, in the ‘conjunctive’ condition, because both
the color and the shape of the objects are causally relevant,
participants would not have a privileged memory of either
feature over the other, and thus would be equally likely to
select each partially congruent option.

Results

Prediction task Figure 3 shows participants’ accuracy in
the ‘prediction task’ across trials. Participants were able to
quickly learn which objects were blickets. In the conditions
in which one feature mattered, more than 80% of participants
successfully predicted whether or not the blicket detector was
‘on’ by trial 5. In the conjunctive condition (Figure 3d), it
took participants a little longer to learn the rule.

Surprise test Figure 4 shows participants’ selections in the
‘surprise test’ for each condition. Results are aggregated over
the counterbalanced conditions. For the purpose of visualiza-
tion, we assume that cubes are blickets and that the black cube
was shown immediately prior to the surprise test. Our main
hypothesis was that if people misremembered what they had
just seen, they’d be more likely to select the rule-congruent
option than the rule-incongruent option. In the ‘feedback’
condition in which participants saw the outcome on their fi-
nal prediction trial, participants were more likely to select the
rule-congruent than the rule-incongruent option but the differ-
ence was not significant, B= 0.55, 95% CI [−0.01,1.12], p=
.06. In the ‘no feedback condition’, where participants didn’t



see the outcome on the final prediction trial, participants were
significantly more likely to select the rule-congruent option
B = 0.77, 95% CI [0.21,1.33], p = .01.

In the ‘short condition’ we correctly predicted that
there would be no significant difference in selecting the
rule-congruent versus rule-incongruent option, B = 0.18,
95% CI [−0.5,0.87], p = .6. Interestingly, participants were
more likely to respond correctly here compared to the longer
conditions, even though they had seen many fewer predic-
tion trials. Finally, in the ‘conjunctive’ condition, we cor-
rectly predicted that there would be no difference in selecting
either of the two partially matching responses, B = −0.36,
95% CI [−1,0.28], p = .26.

Discussion
Participants had no trouble learning what distinguished blick-
ets from non-blickets. However, learning this simple rule had
a consequence: participants didn’t encode all the information
about the stimulus, but paid specific attention to those fea-
tures that were causally relevant. This was revealed through
the systematic errors they made when asked to recall what
they had just seen. For example, when shape (but not color)
was diagnostic of blickets, participants’ incorrect responses
were more likely to have the same shape as the correct re-
sponse, than they were to have the same color.

Participants’ tendency to recall the rule-congruent rather
than the rule-incongruent option cannot be explained by them
having remembered the feedback they received on the final
prediction trial. We found an even stronger effect once we
removed the feedback from the last prediction trial. One re-
maining possibility is that, while participants didn’t receive
feedback, they may still have remembered what response they
produced on the last trial (whether they had clicked the ‘yes’
or ‘no’ button) and then chose an option that was consistent
with their response. This is addressed in Experiment 2.

When participants weren’t given time to build a simplified
causal representation in the ‘short’ condition, they were more
likely to correctly select the object they had last seen, and
when they made a recall error, they were just as likely to se-
lect rule-congruent and rule-incongruent objects. Similarly,
in the ‘conjunctive’ condition, when both shape and color
mattered, participants were again more accurate in recalling
the object they had last seen, and were equally likely to select
either of the partially congruent options.

Experiment 2: Causal abstraction of physics
Experiment 1 provides evidence for the role of abstraction
in causal learning using a simple ‘blicket detector’ task. In
Experiment 2, we extend these findings to the domain of
intuitive physical reasoning (Wu, Yildirim, Lim, Freeman,
& Tenenbaum, 2015). In this experiment, participants were
asked whether a block sliding down a ramp would would
cross a finish line (see Figure 1b). Like in Experiment 1,
we manipulated two features: the color of the block and the
color of the ramp. Each feature was diagnostic for the friction
associated with the object.

Which image correctly shows where this cube will end up?

Figure 5: Experiment 2. In the ‘surprise test’, participants
selected which image shows where the block will end up.

This physical setting expands the ‘blicket detector’ task in
a number of ways. First, on a fine level of granularity, the out-
come now features four possible states: the different positions
of where the block ends up (see Figure 5). On a more abstract
level, however, there are only two outcome states: whether or
not the block crosses the finish line. This allows us to test
whether people map a larger space of possible outcomes onto
a smaller space that matters for their goal. Second, we can
show physically realistic animations of what happens in each
scenario. The setting thus comes a little closer to the kinds of
situations we may experience in our everyday lives. Finally,
this task addresses a potential confound from Experiment 1.
This time, the predicted pattern of results cannot be explained
by participants’ memory of their response immediately pre-
ceding the surprise test. Instead of asking participants what
they saw on the last trial, we ask participants to make predic-
tions about where exactly the block will end up (see Figure 5).
This task has the added advantage of allowing us to get more
data from each participant: four judgments instead of one.

Methods
Participants Participants were recruited through Prolific
using the same inclusion criteria as in Experiment 1. 359 par-
ticipants (age: M = 38, SD = 15; gender: 186 female, 161
male, 9 non-binary, 3 no response; race: 272 White, 32
Black, 29 Asian, 18 Multiracial, 3 Native, 5 other or no
response) took part in three experimental conditions (long:
N = 120, short: N = 120, conjunctive: N = 119). No one
participated in more than one experiment or condition. The
average compensation exceeded $11/hr in each condition.

Procedure The stimuli for this experiment consisted of
simple videos showing a block sliding down a ramp and then
along a plane. Some blocks would slide beyond a finish line,
while others would stop short. Blocks were either red or black
and ramps were either blue or yellow. The color of a ramp, or
of a block, was diagnostic for its surface friction. After slid-
ing down the ramp, and along the plane, a block would stop in
one of four equally spaced positions. The first and second po-
sitions did not cross the finish line, while the third and fourth
positions did. Importantly, the surface frictions were set such
that the friction of either the block or the ramp determined
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Figure 6: Experiment 2. Accuracy in the prediction task.
Lines show logistic regression model fits.

whether the block would cross the finish line. For example,
in the clips shown at the top of Figure 7, red blocks cross the
finish line and black blocks don’t. Here, blocks slide further
on blue compared to yellow ramps. So, although both the
ramp and the block contribute to the block’s final position, at-
tending to the block alone is sufficient for predicting whether
it crosses the finish line.

Participants were familiarized with the scene, and were
instructed that they would need to make predictions about
whether the block would cross the finish line in each of the
four possible scenarios. Participants were then given a brief
comprehension check, and were informed that they would re-
ceive a bonus for each correct prediction. The main body of
the experiment then consisted of a set of ‘prediction trials’
in which participants were presented with an image showing
a block at the top of a ramp like in Figure 1b. Participants
were asked if the block would cross the finish line. Upon re-
sponding, participants were shown a video of the block slid-
ing down the ramp and coming to rest. They received feed-
back about whether their response was correct.

After completing the final ‘prediction trial’, participants
were presented with a ‘surprise test’. Now, rather than in-
dicating whether the block would cross the finish line, partic-
ipants were asked: “Which image correctly shows where this
cube will end up?” like in Figure 5. Participants responded by
selecting one of the four images. The ‘surprise test’ included
one trial for each of the four scenarios (black/red block on
yellow/blue ramp). The order of these trials was randomized,
and participants received no feedback on these trials.

Design This experiment had three conditions. In the ‘long’
condition, participants completed 16 prediction trials. In the
‘short’ condition, participants completed only 4 prediction
trials (one for each combination of block and ramp). Finally,
in the ‘conjunctive’ condition, the finish line was moved such
that it fell between the third and fourth positions. As a re-
sult, whether the block crossed the finish-line now depended
on both the friction of the block, and that of the ramp. In the
‘conjunctive’ condition participants completed 16 prediction
trials. The causally pivotal object (block or ramp) as well
as the colors which corresponded to high or low frictions for
each object were counterbalanced between participants.

Predictions
In the ‘long’ condition, we predicted that participants’ selec-
tions across all four trials would be more strongly affected
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Figure 7: Experiment 2. Participant selections of different
end positions in the ‘surprise test’, separated by the correct
response. Green bars indicate the correct response, orange
bars show outcome-congruent responses.

by rule-relevant features compared to rule-irrelevant features.
We also predicted that for the subset of trials in which the
correct response was position 2 or position 3, participants
would be more likely to choose the outcome-congruent re-
sponse than the outcome-incongruent response. For exam-
ple, if the correct response was 2, participants would be more
likely to select 1 than 3. While both of these positions are
equidistant from position 2, they fall on different sides of the
finish line and would thus lead to different outcomes.

In the ‘short’ condition, we predicted that there would be
no difference in how strongly rule-relevant and rule-irrelevant
features affected participants’ selections, and that they would
be just as likely to select outcome-congruent or outcome-
incongruent responses when the block’s correct final position
was 2 or 3.

Finally, in the ‘conjunctive’ condition, we predicted that,
when the correct position was 3, participants would be more
likely to selection position 2 (which would lead to the same
outcome) than position 4. We also predicted that participants
would be more likely to select the correct response when the
ground truth was position 4 than for the other three positions.

Results
Prediction task Figure 6 shows participants’ accuracy in
predicting whether the block would cross the finish line over



the course of the prediction test trials. Somewhat surprisingly,
participants’ accuracy in the short condition was quite high on
the fourth and final trial. Like in Experiment 1, participants
found it more difficult to learn the conjunctive rule.

Surprise test We will discuss the selection results in the
‘surprise test’ from the three conditions in turn.
Long condition. Figure 7a (top) shows participants’ selec-
tions in the ‘long’ condition for each of the four combinations
of blocks and ramps. For visualization purposes, we assume
here that black blocks don’t cross the finish line whereas red
blocks do, and that blocks slide further on blue compared
to yellow ramps. The green bars in Figure 7 show correct
responses, and the orange bars show incorrect but outcome-
congruent responses. For example, when the correct response
is that the block would end up in position 2, the outcome-
congruent response would be position 1 because for both po-
sitions, the block would not have crossed the finish line.

To test the prediction that ‘relevant’ features affect partici-
pants’ selections more strongly than ‘irrelevant’ features, we
ran a Bayesian ordinal mixed effects regression with ‘rele-
vant’ and ‘irrelevant’ feature plus their interaction as fixed ef-
fects, and random intercepts for participants.1 We then com-
puted a distribution of the difference between the posterior on
the ‘relevant’ and the ‘irrelevant’ predictor to test whether the
relevant feature mattered more. As predicted, participants’
selections were more strongly affected by ‘relevant’ than by
‘irrelevant’ features, M = 0.85, 95% highest posterior density
interval (HDI) = [0.7,1.01].

To test the prediction that participants are more likely to se-
lect outcome-congruent responses when the ground truth final
position was 2 or 3, we ran a Bayesian mixed effects logistic
regression with an intercept as fixed effect as well as random
intercepts for participants. We coded outcome-congruent re-
sponses as 1 and outcome-incongruent responses as 0. As
predicted, we found that participants were more likely to se-
lect incorrect responses that were outcome-congruent than
ones that were outcome-incongruent, 90% [75%, 99%].
Short condition. Figure 7a (bottom) shows participants’ se-
lections in the ‘short’ condition. In contrast to what we pre-
dicted, ‘relevant’ features again had a stronger influence on
participants’ selections than ‘irrelevant’ features, 0.53 [0.39,
0.67], though this difference was smaller than in the ‘long’
condition. Similarly, against our prediction, participants were
again more likely to select the outcome-congruent response
when the final block position was 2 or 3, 73% [60%, 88%],
but the effect was again weaker than in the ‘long’ condition.
Conjunctive condition. Figure 7b shows participants’ selec-
tions in the ‘conjunctive’ condition. Notice that the images
are different here because the finish line was moved for-
ward such that only position 4 crossed it (but not position 3).
When the ground truth position was 3, participants were more
likely to select the outcome-congruent position 2 than posi-

1We pre-registered Bayesian analyses for Experiment 2 because
it was easier to implement ordinal mixed effects regression models
this way.

tion 4 (59% [46%, 72%]) but, against what we predicted, the
credible interval of the estimate did not exclude 50%. As
predicted, participants’ accuracy for position 4 (81% [71%,
90%]) was greater than that for the other three positions (51%
[41%, 62%], B = 1.44 [0.86, 2.01]).

Discussion
Experiment 2 again shows a pattern of results consistent with
the idea that participants built a goal-contingent abstraction
of the task. Like in Experiment 1, participants were able
to learn the causally relevant information for predicting the
outcome. A consequence of building this representation was
that participants produced systematic errors when confronted
with a ‘surprise test’ for which their learned task representa-
tion was inadequate. Participants were more likely to recall
incorrect outcomes that were consistent with the causal rule
that they had learned. Participants produced these errors even
though they had ample experience with the setting. Indeed, in
the ‘long’ condition and ‘conjunctive’ condition, participants
viewed each of the four clips four times in the prediction task.

Unlike what we predicted, and unlike what we found in
Experiment 1, participants made systematic errors even when
they had little training experience in the ‘short’ condition.
This suggests that participants were able to build the rele-
vant causal abstraction fairly quickly in this task. On the
fourth trial, participants already had an accuracy of almost
80%. In all three conditions, participants were very unlikely
to select a response that was inconsistent with the outcome,
such as selecting position 3 when the correct position was 2
in the ‘long’ or ‘short’ conditions. This suggests that partic-
ipants may have paid particular attention when the outcome
was close to the finish line.

In the ‘conjunctive’ condition, participants viewed essen-
tially the same video clips (with the finish line moved one
position forward) but produced very different responses. For
example, when the end position was 2, participants were now
more likely to think that it was position 3 than position 1. This
is the opposite error pattern from the other two conditions.
This nicely illustrates how people learned causal abstractions
that were suited to the task at hand.

Limitations and future directions
How do people build mental models of the world? Our pa-
per adds to the existing literature suggesting that whatever
shape these models take, they are constructed to suit the task
at hand. The errors people make reveal that they build ab-
stract models that privilege causally relevant information. Of
course, our study is just a first step in prodding the abstract
causal models in people’s minds. To uncover more, we will
likely need a suite of tools. We can ask people to draw
(Huey, Walker, & Fan, 2021), or to recall (Ho et al., 2022).
We can look at their eyes (Gerstenberg, Peterson, Good-
man, Lagnado, & Tenenbaum, 2017), or look at their brains
(Muhle-Karbe et al., 2023). And we can develop computa-
tional models of resource-rational agents that tell us where to
look (Bates et al., 2019).
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