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Highlights
We examine the why and the how of building wise Al.

Wisdom helps humans to navigate intractable problems through object-level
strategies (for managing problems) and metacognitive strategies (for managing
object-level strategies).

Wise metacognition includes strategies such as intellectual humility, perspective-
taking, and context-adaptability.

Wise Al, through such improved metacognitive strategies, would be more robust
to new environments, explainable to users, cooperative in pursuing shared goals,
and safe in avoiding both prosaic and catastrophic failures.

We suggest several approaches to benchmarking wisdom, training wise
reasoning strategies, and adapting Al architecture for metacognition.
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Abstract

Although Al has become increasingly smart, its wisdom has not kept pace. In this article,
we examine what is known about human wisdom and sketch a vision of its Al counterpart.
We introduce human wisdom as strategies for solving intractable problems—those
outside the scope of analytic techniques—including both ‘object-level’ strategies like
heuristics (for managing problems) and ‘metacognitive’ strategies like intellectual humility,
perspective-taking, or context-adaptability (for managing object-level-task fit). We argue
that Al systems particularly struggle with this type of metacognition. Wise metacognition
would lead to Al more robust to novel environments, explainable to users, cooperative
with others, and safer by risking fewer misaligned goals with human users. We discuss
how wise Al might be benchmarked, trained, and implemented.

Keywords: Al, wisdom, metacognition, reasoning, decision-making
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Imagining and building wise machines:
The centrality of Al metacognition

Where does Al still struggle?

Despite recent breakthroughs, artificial intelligence systems (Als) still face critical
shortcomings. They struggle in novel, unpredictable environments, lacking robustness
(see Glossary). Their computations are opaque, creating a problem of explainability [1].
Their challenges with communication and credibility create barriers to cooperation [2].
These shortcomings limit our ability to harness the benefits of Al while avoiding risks and
ensuring safety [3]. As Als increasingly act as agents in the world, these problems will be
exacerbated.

But Als are not the only intelligent agents that must solve these problems—we humans
also face analogues of each of them. Might our own solutions yield some clues for how
Als might do so more effectively?

We argue that one core set of capabilities underlies humans’ ability to make robust
decisions, explain our reasoning, achieve goals cooperatively, and interact safely—
wisdom. We examine the function and mechanisms of human wisdom, concluding that
wisdom serves to solve intractable problems and proceeds via a suite of complementary
object-level strategies (which provide possible solutions to problems) and perspectival
metacognitive strategies (which are necessary to decide among the solutions). We then
consider how humans use these mechanisms to solve our versions of the robustness,
explainability, cooperation, and safety problems. By analogy, we suggest that fostering
wisdom in Als—particularly wise metacognition—will help address these problems.

What is wisdom?
Consider these examples of human wisdom:

e Willa’s children are bitterly arguing about money. Willa draws on her life
experience to explain why they should instead compromise in the short term
and prioritize their sibling relationship in the long term.

e Daphne is a world-class cardiologist. Nonetheless, she consults with a junior
colleague when she recognizes that he knows more about a patient’s history
than she does.

e Ron is a political consultant who formulates possible scenarios to ensure his
candidate will win. He not only imagines best case scenarios, but also imagines
that his client has lost the election and considers what might have caused the
loss.

Why do we intuit some abilities (applying life experience, being intellectually humble,
reflective scenario planning) as ‘wise,” but not others (solving tricky integrals, cracking
clever jokes, composing beautiful sonnets)? Accounts of wisdom highlight a wide array
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of characteristics [4-10; Box 1]. In our view, differences across theories mask important
generalizations about wisdom’s function and mechanisms [11].

Box 1: Wisdom and Metacognition

Though philosophers have debated wisdom for millennia, empirically-grounded models
are recent [4—10]. The Berlin Wisdom Model defines wisdom as expertise in important and
difficult life matters, combining knowledge (e.g., about human nature) with certain
metacognitive strategies that are sensitive to context, value pluralism, and uncertainty [6].
The MORE Model highlights how wise people build psychological resources—such as
managing uncertainty and developing open reflectiveness toward experiences and
perspectives—to cope with life’s challenges [7]. Balance Theory emphasizes how wise
people deploy their knowledge and skills toward the common good by balancing interests
(theirs, others’, society’s) and time horizons (short- and long-term) [10].

Emerging consensus models integrate these perspectives, either conceptually [8] or by
surveying wisdom researchers directly [4]. Across approaches, wisdom converges on a
cluster of metacognitive skills—context-sensitivity, intellectual humility, interest-balancing,
and perspective-integration—which we term perspectival metacognition. Rooted in
philosophical perspectivism, it shifts the goal of reasoning from finding a single “correct”
answer toward achieving a state of maximal situational clarity attained by evaluating and
coordinating competing interpretations.

Although individuals vary in these skills, most people show them to some extent, for
example when planning ahead or coordinating within social groups [4]. This view
challenges the notion that wisdom is reserved for a rare elite; instead, most humans exhibit
moments both of wisdom and of folly [9].

Not all metacognition is perspectival. Whereas some metacognitive strategies (e.g.,
monitoring memory, checking reasoning) optimize performance on well-structured tasks
with clear accuracy criteria, perspectival metacognition specifically concerns multiple, often
incommensurable perspectives. Recruited for ill-structured, value-laden social problems in
which multiple, partly incompatible standpoints must be coordinated rather than simply
judged as right or wrong, this subset of metacognition moves beyond egocentric reasoning
toward balancing interests, adapting to context, and recognizing epistemic limits when
decisions affect others.

Although metacognition is central to wisdom, it does not exhaust it: most wisdom
models also treat concern for others and the common good as central components [4,8].
One possibility is that, in many real-world contexts, such as repeated interactions with the
same partners [89] or when one’s reputation matters to third parties [90], the most effective
way to deal with difficult life challenges, even from a self-interested standpoint, is to
prioritize the common good.

The function of human wisdom: Navigating intractable situations

If we lived in a textbook, we would not need wisdom. All problems would have correct
answers and the world would advertise the information required to find them. Natural
selection would have made us nothing more or less than master statisticians, merciless
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optimizers, lightning calculators. Indeed, in some domains—Ilike low-level visual
processing—we approximate this ideal.

Yet, social interaction and decision-making in an unstructured, ever-changing world
require further tools [12]. Such problems are often intractable in one or more ways. This
can happen because of ambiguities in goals—conflicting values that cannot be put on the
same scale (incommensurable [13]) or a potential outcome changes underlying
preferences (transformative [14]). It can happen because probabilities cannot be
assigned to possible outcomes—the outcomes cannot be enumerated (radically
uncertain [15]), there is a strong dependency on initial conditions (chaotic [16]), the
underlying process is changing over time (non-stationary), or the situation is far beyond
experience (out-of-distribution). And it can happen if the optimal outcome is calculable
only with infeasible resources (computationally explosive).

Our earlier examples of wisdom featured such intractability. Wisdom helped Willa
understand how to make an incommensurable trade-off, Daphne to navigate an out-of-
distribution situation, and Ron to make useful forecasts despite his ignorance about the
radically uncertain future.

Mechanisms of human wisdom: Metacognitive strategy selection

We argue that wisdom manages intractable problems by cultivating and deploying two
types of strategies [4,11] (Figures 1-2): Object-level strategies to manage the problem
itself (i.e., the “object” of judgment) and a cluster of metacognitive strategies to manage
those object-level strategies, particularly when they conflict [17-18].

Object-level strategies yield candidate solutions to intractable problems. Many object-
level strategies are heuristics—rules of thumb which rely on a small number of inputs
and do not attempt a complex analysis [19] but may approximate it [20]. For example,
Willa and Ron may have used heuristics like “Prioritize family relationships” and “Avoid
the worst-case scenario.” Heuristics often work well, despite requiring less computation
than optimization, because they focus on just the most relevant information, reducing the
chances of overfitting [19]. Much of “folk wisdom” comprises culturally-evolved heuristics,
transmitted across generations (e.g., deference to elders).

The trouble with object-level strategies is their multiplicity. Heuristics can conflict (“look
before your leap” vs “he who hesitates is lost”), and other classes of strategies, varying
in computational complexity, co-exist with heuristics. In narrative thinking, a reasoner
uses causal knowledge and analogies to construct a mental model that can explain a
situation, generate predictions, and evaluate choices [12,21], as when Ron draws on his
knowledge and experiences to generate worst-case scenarios. These intuitive strategies
also co-exist with decision technologies, such as explicit analytic strategies, as when
Daphne uses risk-scoring algorithms as one input to clinical decision-making. Wisdom
requires us not just to have these strategies, but to effectively manage them.
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Even a well-tailored suite of object-level strategies falls short of wisdom. First, even
simple strategies depend on information; an input-seeking process is required. (Ron
must check if he has the relevant facts for his scenarios and fill any gaps.) Second,
strategies often yield conflicting advice; a conflict resolution process is required to
select the best strategy for each situation [23]. (Should Daphne follow the strategy “trust
your judgment” or “trust knowledgeable experts”?) Third, strategies can break under
unfavorable conditions, as when the underlying pattern changes unpredictably; an
outcome-monitoring process is required to safeguard against nonsensical outcomes.
(Willa would question her usual advice if one child was taking advantage of the other.)
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Figure 1. The relationship between object-level and metacognitive strategies in wise reasoning. Object-
level strategies (e.g., heuristics, narratives, decision technologies) provide candidate actions for a given
situation. Metacognitive monitoring and control processes regulate these strategies in three ways: obtaining
the appropriate inputs, deciding which strategy to use when they conflict, and monitoring their outcomes to
avoid catastrophic actions. (Key figure.)

Navigating this complexity requires the ability to monitor and adapt object-level strategies
[24-26] using perspectival metacognition [4]—strategies for coordinating perspectives,
including one’s own and others’ (Box 1). Some are primarily epistemic: Intellectual
humility comprises awareness of what one does (not) know [27]; scenario flexibility
involves considering the diverse ways that a scenario could unfold; context adaptability
identifies features of a situation that makes it comparable or distinct from other situations
[6]. Others have a social dimension: epistemic deference is a willingness to defer to
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others’ expertise [28]; perspective seeking draws on multiple perspectives [6]; viewpoint
balancing recognizes and integrates discrepant interests [10].

Perspectival metacognition contributes to the input-seeking, conflict resolution, and
outcome-monitoring required to manage object-level strategies (Figure 1). For example,
perspective seeking is important for gaining relevant inputs, context adaptability is crucial
for resolving conflicts among strategies in a context-sensitive way, and viewpoint
balancing is one component of outcome-monitoring. Often, these strategies work
together. Daphne exhibits intellectual humility when she recognizes that she does not
understand her patient’s symptoms (recognizing that her existing object-level strategies
are inappropriate); perspective-seeking when she calls upon her colleague’s expertise
(seeking out new object-level strategies); context adaptability when she considers
whether her patient’s unique situation limits the relevance of her colleague’s expertise
(assessing the relevance of new object-level strategies); and ultimately epistemic
deference when she adopts her colleague’s view (accepting the outcome of the new
proposed strategy).
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Figure 2. From Intractability Problems to Wise Al. Left Panel. Wisdom functions specifically to solve
intractable problems—situations that resist analytic optimization due to incommensurable values, radical
uncertainty, or non-stationary environments. Center Panel. To address these challenges, agents deploy
object-level strategies (e.g., intuitive strategies like heuristics and narratives, as well as technologies like
formal procedures) derived from experience or cultural evolution. However, these strategies are often
insufficient because they conflict or lack necessary inputs. Perspectival metacognition serves as the
regulatory control, applying epistemic strategies (e.g., intellectual humility: awareness of what one does
and does not know; acknowledgment of uncertainty and one’s fallibility) and social strategies (e.g.,
viewpoint balancing: recognizing and integrating discrepant interests) to select and adapt the correct
object-level approach to the task at hand. Right Panel. Implementing this metacognitive architecture
enables Al to move beyond a narrow view of intelligence as optimization toward wisdom, resulting in
systems that are more robust, explainable, cooperative, and safe.
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Toward wise Al: Machine metacognition

Object-level strategies define the search space, whereas perspectival metacognition
provides the tools for its wise navigation (Figure 2). Here, we focus here on the latter
because it has been the subject of comparatively less research (but see Box 2 regarding
recent advances in Al metacognition broadly). We believe that perspectival metacognition
is therefore the current weak link for wise Al. Here, we focus on GenAl systems such as
Large Language Models (LLMs), but the arguments extend to other Al paradigms.

GenAl models do have rudimentary forms of metacognition [29]. They can monitor and
control some of their neural activations in “neurofeedback” paradigms [30]. They can
classify math problems by solving procedure [31] and, on easier problems, can assess
whether a step taken led in the correct direction [32]. They perform well on tests of
situational competence for relatively unambiguous situations [33], and some models can
use an inference-time search to decide when to stop searching. At the same time, they
struggle at other metacognitively loaded tasks [29]. They often “hallucinate” an answer
rather than admit ignorance [34] and they struggle to understand their goals [35],
capabilities [35], and strength of their evidence [36]. This cluster of epistemic failings has
been argued to be symptomatic of a broader “metacognitive myopia” [37].

Box 2: Metacognition in Large Language Models (LLMs)

Building on earlier precedents [91-94], interest in Al metacognition has exploded
alongside LLMs [95].

Most work on LLM metacognition uses prompting. In chain-of-thought prompting, the
model produces intermediate reasoning steps which are added to the model’s context
window to inform subsequent processing [96]. This is metacognitive in that the model is
asked to interpret its reasoning processes and use that interpretation to improve its
reasoning. Extensions to chain-of-thought prompting require more complex metacognitive
control, such as chains that backtrack or branch (“tree of thought” [97] and “meta chain-of-
thought” [98]), break problems into sequences of easier to harder subproblems (“least-to-
most prompting” [99] and “plan-and-solve prompting” [100]), or consider multiple possible
reasoning chains (“self-consistency” [101]). Other prompting techniques more explicitly
incorporate wisdom-related metacognition. For example, metacognitive prompting [102]
asks LLMs to consider several metacognitive queries at the same time as a primary query.
Similarly, prompting a model to consider “could you be wrong?” leads it to consider data in
its training set highlighting potential errors and biases [103].

Other approaches alter the module architecture by introducing additional modules or
agents. The most common is a module for evaluating or monitoring proposed outputs. For
example, EXAR uses a “meta-validator” module that assesses the outputs of a model and
uses those assessments to fine-tune the model [104]. MIRROR separates a “Thinker” that
creates an inner monologue and a “Talker” that uses the inner monologue as context for
communicating to the user [105]. Another common addition is an explicit module or
reasoning step for evaluating model capabilities, learning progress (e.g., in MAGELLAN
[106]), or probability of task success (e.g., in MUSE [107]).
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Still other techniques include mapping and evaluating the intermediate steps in chain-
of-thought reasoning in a latent space [108], monitoring hidden layers for anomalies [109],
comparing neural activation patterns in novel cases to baselines with known metacognition
[110], treating metacognitive tasks such as self-awareness and self-evaluation as
Bayesian learning problems [111], and incorporating “fast” and “slow” reasoning modes for
routine versus complex problems [112].

Models with enhanced metacognition have been applied to a growing array of
problems—few-shot classification [113], external tool selection [110], improving the use of
external knowledge sources [114], inferring beliefs and desires [115], accurately classifying
linguistic nuance such as sarcasm [116], and navigating simulated scenarios such as a
zombie apocalypse [117]. Yet, these techniques remain imperfect and not all are wisdom-
related (Figure 2).

What are the potential benefits of wise Al?

We suggest that deficits in Al wisdom—and perspectival metacognition in particular—
underlie failures in robustness, explainability, cooperation, and safety (Figure 2).

Robustness

Given the range of intractable environments in which intelligent systems must operate,
three failures of robustness are common: A system can be unreliable—given similar
inputs, a system can produce wildly different outputs. This could be caused by applying
different strategies each time, or applying a strategy that produces inconsistent results. A
system can be biased—the output is systematically wrong or non-representative in a
predictable direction. Or a system can be inflexible—novel inputs lead to lower-quality
outputs.

Human wisdom combines object-level and metacognitive strategies to adapt robustly
across environments. Object-level strategies like heuristics can be beneficial because
they sometimes outperform analytic optimization by avoiding data overfitting [19],
especially in novel, out-of-distribution contexts (but see [38]). These strategies are
supported by wise metacognition, which helps reasoners to learn new information from
other perspectives and discern its relevance, to balance the competing urges to simplify
and optimize, and to avoid catastrophic error by checking the plausibility of a strategy’s
output.

For similar reasons, wise Al would be more robust in all three senses. It would be more
reliable: Its monitoring processes would evaluate whether it is sensible to use different
strategies in comparable situations and reject excessively inconsistent strategies. It would
also be less biased: Since biased outputs usually result from biased inputs, a wise Al
would reflect on its training data or models of the world, identifying sample deficiencies in
its training data (perhaps requesting additional data), and understanding the causal
process by which biases resulted (correcting for that bias). Finally, wise Al would be more
flexible: It would moderate its confidence in novel situations, and would reduce, manage,
and navigate uncertainty.
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Explainability

Opaque Al can produce puzzling outputs, difficult-to-diagnose errors, and barriers to
collaboration [1]. Although cognitive scientists disagree about the extent of introspective
access in humans [39], all theories agree that metacognition is necessary for justifying
decisions to ourselves and others. Thus, wise Al would likely be more explainable.

One possibility is that, in humans, consciously accessible metacognitive strategies guide
behavior. When we report our thought processes, we are reporting observations. For
instance, the decision to moderate confidence in a prediction could be caused by a
conscious recognition of ignorance, which can then be reported. The explainability
problem is then reduced to selecting which of those observations to report, that is, which
are the most relevant causal antecedents of the output.

On the opposite extreme, the mind may be “flat” [40]—it does not contain hidden depths
of reasons that can be uncovered through introspection. When we report our thought
processes, we report inferences (“stories”), not observations. The reasoner observes the
outputs of her strategies and reasons backwards to their possible causes [41]. These
inferences may often be incorrect [42], yet they are often useful justifications that, when
expressed, constrain future thought and behavior. Since metacognition itself is not
observable but only inferable, explainable Al would need to generate a useful narrative
to make sense of its own actions—itself a metacognitive process.

Recent work suggests that even using techniques such as chain-of-thought [43] or
metacognitive prompting [44] (Box 2), models confabulate insight rather than genuinely
introspect, generating explanations not “faithful” to their underlying reasoning. Under the
classical view, we would hope that techniques for improving the introspective accuracy of
metacognition would yield more faithful explanations; if the mental flatness view is correct,
all we can hope for is more useful post hoc reconstructions.

Cooperation

Als increasingly behave within larger networks, requiring both Al-Al cooperation (e.g.,
autonomous vehicles negotiating traffic) and Al-human cooperation (e.g., surgical
robots), and influencing human—human cooperation (e.g., social media content curation).
Cooperative Al [2,45] examines how Al can benefit all parties involved by navigating
barriers to understanding, communication, and commitment. Wise object-level and
metacognitive strategies are critical to how humans solve these problems, suggesting the
same may be true for Al.

Cooperation requires understanding the social dynamics of the situation, including the
likely actions taken by others. Since those actions depend on the beliefs and goals of
agents, social understanding requires theory-of-mind [46], including the tacit ability to
form joint plans to coordinate behavior [47]. In humans, this is accomplished through
object-level strategies such as first-person simulation (putting oneself in the other’s
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shoes) [48] and third-person, theory-based reasoning (e.g., assuming that the agent is
rational [49]).

Cooperation depends equally on communication—selecting and sending information to
potential partners. Incoming information must be filtered to act on what is useful and
ignore what is misleading or irrelevant [50]. Even young children develop object-level
strategies for evaluating sources—tracking cues such as accurate past testimony and
conflicts of interest [51]—and more sophisticated reasoners can check whether the
reasoning itself is valid [52]. Such “epistemic vigilance” mechanisms make credible
communication among humans possible: Without a means of assessing a
communication, the risk of exploitation would undermine trust.

Cooperation can unravel when long-term incentives diverge, so humans have evolved
ways to make credible commitments. Third-party social judgments—introducing potential
punishment and reputational risk—impose external costs on defection [53], while
emotions like shame and guilt impose internal costs [54]. Humans sharing a cultural and
psychological context can assume these costs as common ground, promoting credible
commitment.

Wise metacognition is required to effectively manage these object-level mechanisms [55-
56]—resolving conflicts among strategies (e.g., when accuracy cues diverge), assessing
their appropriateness (e.g., whether one can evaluate a chain of argumentation), and
seeking appropriate inputs (e.g., knowing the capabilities of the other counterparty). This
last point is particularly important for cooperative Al, which could overestimate the abilities
of humans or lack common ground such as a shared emotional system.

Safety

Concerns about Al safety span the prosaic to the cataclysmic [3,57]. For now, the main
safety risks are simply that systems that we come to rely on fail us—a shoddy surgical
robot, incompetent tax advice, or biased parole algorithm. Machine metacognition can
help to avoid such failures [58]. Als with well-calibrated confidence can target the most
likely risks; appropriate self-models would help Als to anticipate failures; and continual
monitoring of its performance would facilitate recognition of high-risk moments.

Some worry, however, that in the future, superintelligent machines will pose an existential
risk to humanity if their goals are not ‘aligned’ with ours [59]. This concern arises from two
observations: (i) Predefined goals are likely to be mis-specified or become obsolete, and
(i) a powerful Al could be difficult to curtail if it aggressively pursued the wrong goals.
Bostrom [59] illustrates both points in his parable of the paperclip-maximizing Al that
converts the Earth into paperclips and kills all humans in its way.

The goal of Al alignment [3] is to prevent such mismatches between the goals of an Al
and its users—an exceedingly difficult task due to the many assumptions that are
unspoken and potentially unshared. Wisdom is crucial to navigating such problems—first,
because goal-specification is a prototypical example of an intractable problem for which
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we deploy wisdom; and second, because humans rely on ‘common sense’ wisdom to fill
in such unspoken assumptions and make tacit agreements [60].

Indeed, we suspect that engineering wise social interaction—in addition to or perhaps
instead of alignment—may be necessary to achieve alignment’s goals. Alignment faces
not only technical problems, but conceptual ones. Who should we align Al to? People
differ in their goals (e.g., believing GenAl should solely aim to provide accurate
information versus avoiding the reinforcement of harmful stereotypes) and values (e.g.,
cross-cultural and religious differences in maximizing happiness vs. liberty) [61]. Should
we increase the average human well-being, its sum, or care for the whole biosphere? And
why assume that today’s values are the right ones, given profound shifts even over recent
history [62]? Aligning Al to current values would risk reifying those values as “the right”
values, stalling future social progress.

A two-pronged, wisdom-oriented approach may be more promising.

First, Als must themselves implement wise reasoning—aligning them to the right object-
level and metacognitive strategies rather than to the “right” values. For example, one
object-level strategy may be a bias toward inaction (not executing an action if it risks harm
according to one of several possibly conflicting human norms), which in turn requires
metacognitive regulation (learning what those conflicting perspectives are and avoiding
overconfidence).

Second, we must consider how Als fit into a broader institutional ecosystem. Institutions
like governments and markets address the ‘alignment’ problem that we humans have—
ideally channeling our discrepant interests and values into socially productive directions.
It is useful to think of Al not merely as an external tool influencing society but as a new
type of agent within society, embedded in pairwise interactions and, increasingly, our
broader institutions. If channeled effectively through institutions, metacognitively wise Al
can enhance social evolution rather than undermine it. Both human and artificial agents
in society should continue to allow our values to evolve toward a shared reflective
equilibrium [63]—bringing situation-specific judgments and general moral principles into
alignment with one another through iterative adjustments.

How might we build wise Al?

Before considering how we can build wise Al, first consider how nature has built us to be
wise. We suspect that metacognitive abilities are primarily evolutionary adaptations built
into the architecture of the human brain, being fundamental across any context, whereas
object-level strategies are primarily acquired through experience, including socialization
and didactic learning, due to their great situational variability. While acknowledging the
role of development, culture, and self-reflection for metacognition [64-65] and biological
evolution for object-level strategies [66], we take “object-level = development” and
“‘metacognition = evolution” as a starting point. If so, this suggests that implementing
object-level and metacognitive wisdom may require different strategies.
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In humans, object-level strategies like heuristics are typically acquired through trial-and-
error and social learning. Since wise heuristics are often domain-specific, exhaustively
specifying these rules is likely doomed for the same reasons that rule-based expert
systems in Al failed. Instead, allowing Al systems to learn from experience [67] and from
others [68] may be more promising.

The analogy to the human case suggests, however, that experience alone is unlikely to
suffice for training metacognition. One problem is that in typical Al training, a loss function
is minimized, which is defined over the model’'s outputs rather than its reasoning.
Although this may indirectly select for sound decision-making strategies, the poor
explainability of many state-of-the-art models makes it difficult to determine what those
strategies are; an output may please a human judge for the wrong reasons. Such a
system would often emulate the decisions of a wise human, but would not itself be
metacognitively wise.

How might one get around this problem? Optimistically, standard LLM training techniques
could be modified. For example, a two-step training process could be implemented in
which a model is first trained for wise strategy selection directly (e.g., correctly identifying
when to be intellectually humble) and then training them to use those strategies correctly
(e.g., carrying out intellectual humble behavior). Alternatively, one could present models
with benchmark cases, request them to produce both their metacognitive strategy and
their output, and then reward only the correct combination of strategy and output [69]. In
either case, models could be trained against what a wise human would do or against the
acceptability of its explanations for its choices.

Perhaps, however, no amount of training will get current models to human-level
metacognition, just as no amount of language exposure will get a squirrel to talk. On this
view, the “innate” architecture of current models is not up to the task. LLMs work by
generating the next token (i.e., word or word part) based on the input in its context
window. At first, this input comprises the user’s prompt; after the model is run to generate
the first token in its response, this token is added to the context window, and the model
is re-run to generate the second response token, and so on. This process does not involve
feedback from later layers to earlier ones and it is backward-looking—it predicts one word
ahead based on its input and output-so-far, rather than explicitly planning ahead. This
process can yield surprisingly intelligent outputs—and even some degree of planning
(e.g., rhyming in a poem [70])—given enough parameters and data. Yet, given their lack
of explicit planning, perhaps it is unsurprising that LLMs struggle with metacognition,
which requires reflecting on one’s thoughts and devising strategies to regulate them.
Changes to model prompting and architecture may be required, not just changes to
training. Box 2 describes some ongoing efforts in this spirit, while Table 1 lists some more
speculative ideas.
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Table 1: Engineering Wiser Al via Metacognition

Conceptual idea

Possible implementations

1. Explicit metacognitive checkpoints and
error detection loops

Integrate explicit reflective checkpoints into Al
decision-making processes, forcing the Al to
periodically evaluate coherence, reliability, and
confidence in its reasoning. Implement continuous
error detection loops where an Al system revises
internal strategies upon encountering prediction
failures or contradictions.

Introduce specific computational modules at
defined decision points (e.g., transformer layers in
LLMs) that assess output uncertainty (entropy,
calibration error) and coherence metrics
(consistency with past outputs).

Implement error detection using confidence
thresholds learned from validation data. For
instance, pause execution to reassess decisions
whenever model confidence falls below calibrated
uncertainty thresholds, forcing conditional re-
generation or seeking external verification.

2. Epistemic source tagging and reliability
updating

Implement structured metadata that explicitly
encodes epistemic reliability for training data
sources. Allow systems to dynamically update
their trust in data sources (provenance and
lineage) based on consistency of predictions and
feedback, akin to human epistemic vigilance
mechanisms.

Precompute and embed metadata vectors
capturing reliability indicators (e.g., historical
accuracy, domain expertise scores, publication
credibility metrics) alongside raw tokens or data
points.

Train Al systems to dynamically adjust reliability
scores using a simple online Bayesian updating
mechanism: sources whose information frequently
results in erroneous outputs or internal
contradictions receive lowered reliability scores,
reducing their influence during inference.

3. Hierarchical and reflective reasoning
architectures

Employ hierarchical architectures inspired by
cognitive models (e.g., ACT-R [118], SOAR
[119]), where a metacognitive layer explicitly
monitors and selects object-level strategies.
Develop explicit reflective subsystems designed to
audit internal consistency and logical coherence
of reasoning outputs, promoting effective “sanity
checking.”

Implement cognitive-architecture-inspired
hierarchical models, using explicit controller
modules (meta-policy networks) to govern lower-
level task-specific modules: a) Hybrid
symbolic/sub-symbolic approaches (e.g.,
OpenCog Hyperon [120], ACT-R style modules);
b) Reinforcement learning hierarchical controllers
(e.g., FeUdal networks [121])

Introduce standalone “auditor” modules trained
explicitly to critique primary outputs for internal
consistency, logical coherence, or sensitivity to
constraints. For instance, chain-of-thought
prompting [96] or future advanced reasoning
modules explicitly trained as reasoning auditors.

4. Transparency via metacognitive narration

Design systems capable of transparently narrating
their internal metacognitive reasoning (“thinking
aloud” protocols) to users, aiding explainability
and making reasoning easier to audit and debug.

“Thinking Aloud” protocols: Implement explicit
model training on explanatory datasets or devise
new chain-of-thought approaches, which generate
explicit narration of metacognitive reasoning steps
in understandable language.

Interactive debugging & auditing interfaces: Build
interactive visualization tools displaying model
uncertainty, reasoning trails, or decision
checkpoints to users or system auditors.

5. Distributed and social metacognition

Multi-agent epistemic vigilance: Multiple
independent Al agents work collaboratively,
requiring agreement or consensus for outputs on
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Leverage multi-agent reasoning and collective
decision-making, analogous to human reliance on
socially distributed cognition. Implement epistemic
cross-checking and adversarial debate between
multiple Al systems to mitigate individual Al
overconfidence and misinformation propagation.

critical tasks. Concrete architectures: Multi-agent
RL (MARL) [122], decentralized autonomous
organizations (DAO)-inspired decision-making
[123].

Debate-based metacognitive cross-checking: Al
reasoning outputs must pass adversarial debates
or cross-examinations from independently trained
Al debaters before being finalized. Example
frameworks: OpenAl’s debate-style Al safety
approach [124], Anthropic’s Constitutional Al
approach [125].

6. Scheduled off-line replay & consolidation

Use off-line periods for Al systems to consolidate
and “reflect” on prior model runs, akin to one
possible function of the human default mode
network [65,126]

Allocate compute to periods during which outward
action pauses while the model regenerates latent
trajectories, pits alternative chains of thought
against each other (self-consistency / debate),
and refreshes its calibration curves before the
next on-line cycle.

Evaluating Machine Wisdom

Once we build a wise machine, how will we know it? Wisdom is context-sensitive, so a
benchmark input must contain sufficient detail to match the rich context of a real-world
situation. Moreover, since wisdom is about the reasoning underlying strategy selection,
any evaluation procedure must judge not only the outcome but the precipitating process.

Existing benchmarking work in metacognition has focused on the calibration of
confidence judgments [29,71]. An advantage of this narrower domain is that it is much
more tractable than the perspectival metacognitive strategies we have discussed here,
with well-developed methods that even work in non-human animals [72], lend themselves
to computational modeling [73], and are able to separate performance on the cognitive
versus metacognitive component of a task [71,74]. Nonetheless, these tasks are domain-
specific, often constrained to well-defined laboratory environments, and do not yet
capture the richness of everyday intractable problems that wise judgment handles.

To make progress, let's consider how other rich, complex constructs have been
benchmarked. One approach is to collect tasks from psychology experiments, akin to
benchmarking theory-of-mind or analogical reasoning [75-76]. Since these tasks are
discussed in the literature (and appear in training data), the content must be replaced with
structurally similar but superficially different problems [77-78]. However, since these tasks
usually measure outcomes only and provide little context, this approach cannot be
adopted wholesale for wisdom. An alternative approach—used to benchmark explanatory
abilities [79]—is for domain experts to subjectively evaluate the quality of the model's
outputs. This approach is well-suited for evaluating reasoning (rather than outcomes), but
requires some form of quantification to compare models.

One way to evaluate Al wisdom would start with tasks that measure wise reasoning in
humans [80]. These tasks present participants with a social dilemma or a choice between
seemingly incommensurable options, asks them to reflect on the next steps, with
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reflections scored on prespecified criteria by human raters, such as experts. Novel and
detailed variants of such scenarios could be presented to Als, with their performance
scored by either human raters or by other models (if their scores converge) [81]. It would
be important to include problems that agentic Als might confront in the future (e.g.,
whether to execute a debatably ethical request), to ensure they can reason wisely not
only about humans but about themselves.

Ultimately, the wisdom of increasingly autonomous Als will be judged by human users
and stakeholders. Prior benchmarking is a crucial start, but there is no substitute for
interacting with the real world. Given this intrinsic limit on our ability to evaluate wisdom
ex ante, this integration with the world must proceed slowly to minimize risks.

Concluding Remarks

Building smarter machines comes with risks: Al with advanced capabilities might pursue
undesirable goals. Is there a parallel concern about the unintended consequences of
building wiser machines?

Perhaps not. Empirically, humans with wise metacognition show greater orientation
toward the common good, including cooperation and responsiveness to others [55] (Box
1). Perhaps wise Al would have these qualities too.

Yet, an important ambiguity arises here about which we can only speculate: Although
current Al may not be wise, what shape would a future Al's wisdom take?

One possibility is that Al and human wisdom might sharply diverge. Human metacognition
serves largely to economize scarce cognitive resources [82-83], and many biases may
be side-effects of solving this constrained optimization problem [84-85]. Given the more
abundant computational resources of wise Al, this optimization problem may look very
different from humans’—Als might rationally invest far more effort. Conversely, humans
outsource much of our cognition to the social environment (as in the division of physical
or cognitive labor [86-87]), including knowledge-generating institutions that are ever-
evolving. Distributed cognition of this sort is not yet a dominant paradigm in Al and it is
unclear what its (dis)advantages are compared to an extensive, integrated knowledge
base.

Conversely, perhaps Al wisdom would converge considerably with human wisdom. Al
wisdom also faces computational constraints, since compute can be costly. Moreover,
heuristics work for Al for the same reasons as they work for humans: When we lack
complete information, heuristics can perform well by implementing sensible, robust
defaults. Finally, Als may come to join our social environment—and perhaps reap some
of the same social cognitive advantages as humans—as Al is increasingly integrated into
human institutions [88].

Given these considerations, uncertainty remains (see Outstanding Questions). What if
we tried and failed to build wise Al? What if the characteristics of wise Al differ from those
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of a wise human, to the detriment of humans? To these concerns we have three
responses.

First, if the alternative were halting all Al progress, building wise Al would introduce added
risks. But compared to the status quo—advancing capabilities at a breakneck pace
without wise metacognition—the attempt to make machines intellectually humble,
context-adaptable, and adept at balancing viewpoints seems clearly preferable.

Second, at least in the medium term, Al will not act autonomously but will remain a
collaborative tool to be used by and for humans, supporting rather than replacing human
wisdom. In this sense, understanding how humans and Als might work together to
produce wise or foolish decisions becomes a crucial research agenda.

Finally, the qualities of robust, explainable, cooperative, and safe Al will amplify one
another. Robustness facilitates cooperation (improving confidence from counterparties)
and safety (avoiding failures in novel environments). Explainability facilitates robustness
(aiding human intervention through transparency) and cooperation (more effective
communication). Cooperation facilitates explainability (accurate theory-of-mind about
users) and safety (implementing shared values). Wise metacognition can lead to a
virtuous cycle in Al, just as it does in humans. We may not know precisely what form wise
Al will take—but it must surely be preferable to folly.
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Glossary

Al alignment: Ensuring that Als pursue the goals intended by (“aligned with”) their
human users.

benchmark: A set of standard tasks on which Als can be compared to one another
and to humans for a given capacity.

commitment: The ability to make a credible promise that will be kept at a later time,
particularly as a means of incentivizing a mutually beneficial cooperative agreement.
context window: The sliding window of text that a GenAl model has access to (can
‘remember”) when formulating its output.

conflict resolution process: A type of metacognitive process that selects the best
strategy when object-level strategies conflict.

cooperative Al: Al that is able to pursue shared goals—with other Als or with
human users—through abilities including social understanding, communication, and
credible commitment.

decision technologies: Organized procedures for making decisions, such as
formal calculation.

explainable Al: Al that can be effectively understood by users, for instance because
the Al can effectively communicate its decisions and reasoning to users.

heuristic: An object-level strategy that produces a solution to a problem without
conducting a full analysis, typically by using a subset of the available information.
input-seeking process: A type of metacognitive process that seeks the inputs
required for object-level strategies to work.

intractable problem: A problem that does not lend itself to analytic techniques such
as optimization.

metacognitive strategy: A strategy that is used to manage other (especially object-
level) strategies, including by seeking the required inputs, resolving conflicts among
strategies, and monitoring the plausibility of outcomes.

narrative thinking: An object-level strategy in which an individual constructs a
causal and analogical model of a situation in order to understand a situation, predict
how it will unfold, and evaluate potential choices.

object-level strategy: A strategy that is used to produce a potential solution to a
specific problem or task, such as a heuristic, narrative, or analytic procedure.
outcome-monitoring process: A type of metacognitive process that checks
whether outcomes of the selected object-level strategy are plausible (also called
“sanity checking”).

perspectival metacognition: A subset of metacognitive skills for managing and
integrating perspectives on a situation.

robust Al: Al that works effectively in novel environments because it is reliable
(similar inputs yield similar outputs), unbiased (not systematically mistaken), and
flexible (able to generalize to novel inputs).

safe Al: Al that avoids risks associated with harmful failures, which can include both
incompetence (e.g., errors because the Al is not robust) or malevolence (e.g.,
malfeasance because the Al is not aligned).
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wisdom: A suite of abilities used to solve intractable problems, comprising both
metacognitive strategies (e.g., intellectual humility) and object-level strategies (e.g.,
culturally transmitted heuristics).

Outstanding Questions

How might wise Al inform—and be informed by—the cognitive science of human
wisdom? For instance, how can computational modeling of human wisdom
(including object-level and metacognitive strategies) and efforts to engineer
machine wisdom be mutually enlightening?

What is the best approach to formalizing wise reasoning in mathematical
approaches to Al robustness, explainability, cooperation, and safety?

How might the give-and-take of conversation between humans and Al lead to a form
of shared wisdom? How should this potential for collaborative metacognition inform
the design of Al systems?

Might Al wisdom exceed human wisdom? If so, how would we humans know?
How would the mass adoption of wise Al impact society? For example, could this
lead to offloading of metacognitive labor, leading to a decline in human wisdom? Or
could wise Al act as a cognitive prosthetic to enhance human wisdom in practice?
Could wise Al be subverted to malicious ends? Might wiser Al counter this problem,
or exacerbate it?

What can we learn about existential Al risks by studying wise and unwise human
decision-making and institutional design around other existential risks such as
nuclear weapons?

Where would Al not benefit from wise metacognition—for instance, because the
benefits are marginal relative to economic, environmental, or computational costs?
How would metacognitive Al systems scale up? How would the further integration
of wise Al into human institutions impact the functioning of those institutions and of
Al itself?

What further considerations would be required to embody metacognition in robots?




