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Highlights 
 

• We examine the why and the how of building wise AI. 
 

• Wisdom helps humans to navigate intractable problems through object-level 
strategies (for managing problems) and metacognitive strategies (for managing 
object-level strategies). 
 

• Wise metacognition includes strategies such as intellectual humility, perspective-
taking, and context-adaptability. 

 

• Wise AI, through such improved metacognitive strategies, would be more robust 
to new environments, explainable to users, cooperative in pursuing shared goals, 
and safe in avoiding both prosaic and catastrophic failures. 
 

• We suggest several approaches to benchmarking wisdom, training wise 
reasoning strategies, and adapting AI architecture for metacognition. 
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Abstract 
 
Although AI has become increasingly smart, its wisdom has not kept pace. In this article, 
we examine what is known about human wisdom and sketch a vision of its AI counterpart. 
We introduce human wisdom as strategies for solving intractable problems—those 
outside the scope of analytic techniques—including both ‘object-level’ strategies like 
heuristics (for managing problems) and ‘metacognitive’ strategies like intellectual humility, 
perspective-taking, or context-adaptability (for managing object-level-task fit). We argue 
that AI systems particularly struggle with this type of metacognition. Wise metacognition 
would lead to AI more robust to novel environments, explainable to users, cooperative 
with others, and safer by risking fewer misaligned goals with human users. We discuss 
how wise AI might be benchmarked, trained, and implemented. 
 
Keywords: AI, wisdom, metacognition, reasoning, decision-making 
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Imagining and building wise machines: 
The centrality of AI metacognition 

 
Where does AI still struggle?  

 
Despite recent breakthroughs, artificial intelligence systems (AIs) still face critical 
shortcomings. They struggle in novel, unpredictable environments, lacking robustness 
(see Glossary). Their computations are opaque, creating a problem of explainability [1]. 
Their challenges with communication and credibility create barriers to cooperation [2]. 
These shortcomings limit our ability to harness the benefits of AI while avoiding risks and 
ensuring safety [3]. As AIs increasingly act as agents in the world, these problems will be 
exacerbated. 
 
But AIs are not the only intelligent agents that must solve these problems—we humans 
also face analogues of each of them. Might our own solutions yield some clues for how 
AIs might do so more effectively? 
 
We argue that one core set of capabilities underlies humans’ ability to make robust 
decisions, explain our reasoning, achieve goals cooperatively, and interact safely—
wisdom. We examine the function and mechanisms of human wisdom, concluding that 
wisdom serves to solve intractable problems and proceeds via a suite of complementary 
object-level strategies (which provide possible solutions to problems) and perspectival 
metacognitive strategies (which are necessary to decide among the solutions). We then 
consider how humans use these mechanisms to solve our versions of the robustness, 
explainability, cooperation, and safety problems. By analogy, we suggest that fostering 
wisdom in AIs—particularly wise metacognition—will help address these problems. 
 

What is wisdom? 
 
Consider these examples of human wisdom: 
 

● Willa’s children are bitterly arguing about money. Willa draws on her life 
experience to explain why they should instead compromise in the short term 
and prioritize their sibling relationship in the long term. 

● Daphne is a world-class cardiologist. Nonetheless, she consults with a junior 
colleague when she recognizes that he knows more about a patient’s history 
than she does. 

● Ron is a political consultant who formulates possible scenarios to ensure his 
candidate will win. He not only imagines best case scenarios, but also imagines 
that his client has lost the election and considers what might have caused the 
loss. 

 
Why do we intuit some abilities (applying life experience, being intellectually humble, 
reflective scenario planning) as ‘wise,’ but not others (solving tricky integrals, cracking 
clever jokes, composing beautiful sonnets)? Accounts of wisdom highlight a wide array 
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of characteristics [4-10; Box 1]. In our view, differences across theories mask important 
generalizations about wisdom’s function and mechanisms [11]. 
 

Box 1: Wisdom and Metacognition 
 

Though philosophers have debated wisdom for millennia, empirically-grounded models 
are recent [4–10]. The Berlin Wisdom Model defines wisdom as expertise in important and 
difficult life matters, combining knowledge (e.g., about human nature) with certain 
metacognitive strategies that are sensitive to context, value pluralism, and uncertainty [6]. 
The MORE Model highlights how wise people build psychological resources—such as 
managing uncertainty and developing open reflectiveness toward experiences and 
perspectives—to cope with life’s challenges [7]. Balance Theory emphasizes how wise 
people deploy their knowledge and skills toward the common good by balancing interests 
(theirs, others’, society’s) and time horizons (short- and long-term) [10].  

Emerging consensus models integrate these perspectives, either conceptually [8] or by 
surveying wisdom researchers directly [4]. Across approaches, wisdom converges on a 
cluster of metacognitive skills—context-sensitivity, intellectual humility, interest-balancing, 
and perspective-integration—which we term perspectival metacognition. Rooted in 
philosophical perspectivism, it shifts the goal of reasoning from finding a single “correct” 
answer toward achieving a state of maximal situational clarity attained by evaluating and 
coordinating competing interpretations. 

Although individuals vary in these skills, most people show them to some extent, for 
example when planning ahead or coordinating within social groups [4]. This view 
challenges the notion that wisdom is reserved for a rare elite; instead, most humans exhibit 
moments both of wisdom and of folly [9]. 

Not all metacognition is perspectival. Whereas some metacognitive strategies (e.g., 
monitoring memory, checking reasoning) optimize performance on well-structured tasks 
with clear accuracy criteria, perspectival metacognition specifically concerns multiple, often 
incommensurable perspectives. Recruited for ill-structured, value-laden social problems in 
which multiple, partly incompatible standpoints must be coordinated rather than simply 
judged as right or wrong, this subset of metacognition moves beyond egocentric reasoning 
toward balancing interests, adapting to context, and recognizing epistemic limits when 
decisions affect others.  

Although metacognition is central to wisdom, it does not exhaust it: most wisdom 
models also treat concern for others and the common good as central components [4,8]. 
One possibility is that, in many real-world contexts, such as repeated interactions with the 
same partners [89] or when one’s reputation matters to third parties [90], the most effective 
way to deal with difficult life challenges, even from a self-interested standpoint, is to 
prioritize the common good. 

 
The function of human wisdom: Navigating intractable situations  
 
If we lived in a textbook, we would not need wisdom. All problems would have correct 
answers and the world would advertise the information required to find them. Natural 
selection would have made us nothing more or less than master statisticians, merciless 
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optimizers, lightning calculators. Indeed, in some domains—like low-level visual 
processing—we approximate this ideal. 
 
Yet, social interaction and decision-making in an unstructured, ever-changing world 
require further tools [12]. Such problems are often intractable in one or more ways. This 
can happen because of ambiguities in goals—conflicting values that cannot be put on the 
same scale (incommensurable [13]) or a potential outcome changes underlying 
preferences (transformative [14]). It can happen because probabilities cannot be 
assigned to possible outcomes—the outcomes cannot be enumerated (radically 
uncertain [15]), there is a strong dependency on initial conditions (chaotic [16]), the 
underlying process is changing over time (non-stationary), or the situation is far beyond 
experience (out-of-distribution). And it can happen if the optimal outcome is calculable 
only with infeasible resources (computationally explosive). 

 
Our earlier examples of wisdom featured such intractability. Wisdom helped Willa 
understand how to make an incommensurable trade-off, Daphne to navigate an out-of-
distribution situation, and Ron to make useful forecasts despite his ignorance about the 
radically uncertain future. 
 
Mechanisms of human wisdom: Metacognitive strategy selection 
 
We argue that wisdom manages intractable problems by cultivating and deploying two 
types of strategies [4,11] (Figures 1-2): Object-level strategies to manage the problem 
itself (i.e., the “object” of judgment) and a cluster of metacognitive strategies to manage 
those object-level strategies, particularly when they conflict [17-18]. 
 
Object-level strategies yield candidate solutions to intractable problems. Many object-
level strategies are heuristics—rules of thumb which rely on a small number of inputs 
and do not attempt a complex analysis [19] but may approximate it [20]. For example, 
Willa and Ron may have used heuristics like “Prioritize family relationships” and “Avoid 
the worst-case scenario.” Heuristics often work well, despite requiring less computation 
than optimization, because they focus on just the most relevant information, reducing the 
chances of overfitting [19]. Much of “folk wisdom” comprises culturally-evolved heuristics, 
transmitted across generations (e.g., deference to elders). 
 
The trouble with object-level strategies is their multiplicity. Heuristics can conflict (“look 
before your leap” vs “he who hesitates is lost”), and other classes of strategies, varying 
in computational complexity, co-exist with heuristics. In narrative thinking, a reasoner 
uses causal knowledge and analogies to construct a mental model that can explain a 
situation, generate predictions, and evaluate choices [12,21], as when Ron draws on his 
knowledge and experiences to generate worst-case scenarios. These intuitive strategies 
also co-exist with decision technologies, such as explicit analytic strategies, as when 
Daphne uses risk-scoring algorithms as one input to clinical decision-making. Wisdom 
requires us not just to have these strategies, but to effectively manage them. 
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Even a well-tailored suite of object-level strategies falls short of wisdom. First, even 
simple strategies depend on information; an input-seeking process is required. (Ron 
must check if he has the relevant facts for his scenarios and fill any gaps.) Second, 
strategies often yield conflicting advice; a conflict resolution process is required to 
select the best strategy for each situation [23]. (Should Daphne follow the strategy “trust 
your judgment” or “trust knowledgeable experts”?) Third, strategies can break under 
unfavorable conditions, as when the underlying pattern changes unpredictably; an 
outcome-monitoring process is required to safeguard against nonsensical outcomes. 
(Willa would question her usual advice if one child was taking advantage of the other.)  

 
Figure 1. The relationship between object-level and metacognitive strategies in wise reasoning. Object-
level strategies (e.g., heuristics, narratives, decision technologies) provide candidate actions for a given 
situation. Metacognitive monitoring and control processes regulate these strategies in three ways: obtaining 
the appropriate inputs, deciding which strategy to use when they conflict, and monitoring their outcomes to 
avoid catastrophic actions. (Key figure.) 

 

Navigating this complexity requires the ability to monitor and adapt object-level strategies 
[24-26] using perspectival metacognition [4]—strategies for coordinating perspectives, 
including one’s own and others’ (Box 1). Some are primarily epistemic: Intellectual 
humility comprises awareness of what one does (not) know [27]; scenario flexibility 
involves considering the diverse ways that a scenario could unfold; context adaptability 
identifies features of a situation that makes it comparable or distinct from other situations 
[6]. Others have a social dimension: epistemic deference is a willingness to defer to 
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others’ expertise [28]; perspective seeking draws on multiple perspectives [6]; viewpoint 
balancing recognizes and integrates discrepant interests [10]. 
 
Perspectival metacognition contributes to the input-seeking, conflict resolution, and 
outcome-monitoring required to manage object-level strategies (Figure 1). For example, 
perspective seeking is important for gaining relevant inputs, context adaptability is crucial 
for resolving conflicts among strategies in a context-sensitive way, and viewpoint 
balancing is one component of outcome-monitoring. Often, these strategies work 
together. Daphne exhibits intellectual humility when she recognizes that she does not 
understand her patient’s symptoms (recognizing that her existing object-level strategies 
are inappropriate); perspective-seeking when she calls upon her colleague’s expertise 
(seeking out new object-level strategies); context adaptability when she considers 
whether her patient’s unique situation limits the relevance of her colleague’s expertise 
(assessing the relevance of new object-level strategies); and ultimately epistemic 
deference when she adopts her colleague’s view (accepting the outcome of the new 
proposed strategy). 

 
Figure 2. From Intractability Problems to Wise AI. Left Panel. Wisdom functions specifically to solve 
intractable problems—situations that resist analytic optimization due to incommensurable values, radical 
uncertainty, or non-stationary environments. Center Panel. To address these challenges, agents deploy 
object-level strategies (e.g., intuitive strategies like heuristics and narratives, as well as technologies like 
formal procedures) derived from experience or cultural evolution. However, these strategies are often 
insufficient because they conflict or lack necessary inputs. Perspectival metacognition serves as the 
regulatory control, applying epistemic strategies (e.g., intellectual humility: awareness of what one does 
and does not know; acknowledgment of uncertainty and one’s fallibility) and social strategies (e.g.,  
viewpoint balancing: recognizing and integrating discrepant interests) to select and adapt the correct 
object-level approach to the task at hand. Right Panel: Implementing this metacognitive architecture 
enables AI to move beyond a narrow view of intelligence as optimization toward wisdom, resulting in 
systems that are more robust, explainable, cooperative, and safe. 
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Toward wise AI: Machine metacognition 
 
Object-level strategies define the search space, whereas perspectival metacognition 
provides the tools for its wise navigation (Figure 2). Here, we focus here on the latter 
because it has been the subject of comparatively less research (but see Box 2 regarding 
recent advances in AI metacognition broadly). We believe that perspectival metacognition 
is therefore the current weak link for wise AI. Here, we focus on GenAI systems such as 
Large Language Models (LLMs), but the arguments extend to other AI paradigms.  
 
GenAI models do have rudimentary forms of metacognition [29]. They can monitor and 
control some of their neural activations in “neurofeedback” paradigms [30]. They can 
classify math problems by solving procedure [31] and, on easier problems, can assess 
whether a step taken led in the correct direction [32]. They perform well on tests of 
situational competence for relatively unambiguous situations [33], and some models can 
use an inference-time search to decide when to stop searching. At the same time, they 
struggle at other metacognitively loaded tasks [29]. They often “hallucinate” an answer 
rather than admit ignorance [34] and they struggle to understand their goals [35], 
capabilities [35], and strength of their evidence [36]. This cluster of epistemic failings has 
been argued to be symptomatic of a broader “metacognitive myopia” [37]. 
 

Box 2: Metacognition in Large Language Models (LLMs) 
 

Building on earlier precedents [91-94], interest in AI metacognition has exploded 
alongside LLMs [95]. 

Most work on LLM metacognition uses prompting. In chain-of-thought prompting, the 
model produces intermediate reasoning steps which are added to the model’s context 
window to inform subsequent processing [96]. This is metacognitive in that the model is 
asked to interpret its reasoning processes and use that interpretation to improve its 
reasoning. Extensions to chain-of-thought prompting require more complex metacognitive 
control, such as chains that backtrack or branch (“tree of thought” [97] and “meta chain-of-
thought” [98]), break problems into sequences of easier to harder subproblems (“least-to-
most prompting” [99] and “plan-and-solve prompting” [100]), or consider multiple possible 
reasoning chains (“self-consistency” [101]). Other prompting techniques more explicitly 
incorporate wisdom-related metacognition. For example, metacognitive prompting [102] 
asks LLMs to consider several metacognitive queries at the same time as a primary query. 
Similarly, prompting a model to consider “could you be wrong?” leads it to consider data in 
its training set highlighting potential errors and biases [103]. 

Other approaches alter the module architecture by introducing additional modules or 
agents. The most common is a module for evaluating or monitoring proposed outputs. For 
example, EXAR uses a “meta-validator” module that assesses the outputs of a model and 
uses those assessments to fine-tune the model [104]. MIRROR separates a “Thinker” that 
creates an inner monologue and a “Talker” that uses the inner monologue as context for 
communicating to the user [105]. Another common addition is an explicit module or 
reasoning step for evaluating model capabilities, learning progress (e.g., in MAGELLAN 
[106]), or probability of task success (e.g., in MUSE [107]). 
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Still other techniques include mapping and evaluating the intermediate steps in chain-
of-thought reasoning in a latent space [108], monitoring hidden layers for anomalies [109], 
comparing neural activation patterns in novel cases to baselines with known metacognition 
[110], treating metacognitive tasks such as self-awareness and self-evaluation as 
Bayesian learning problems [111], and incorporating “fast” and “slow” reasoning modes for 
routine versus complex problems [112]. 

Models with enhanced metacognition have been applied to a growing array of 
problems—few-shot classification [113], external tool selection [110], improving the use of 
external knowledge sources [114], inferring beliefs and desires [115], accurately classifying 
linguistic nuance such as sarcasm [116], and navigating simulated scenarios such as a 
zombie apocalypse [117]. Yet, these techniques remain imperfect and not all are wisdom-
related (Figure 2). 

 
What are the potential benefits of wise AI? 

 
We suggest that deficits in AI wisdom—and perspectival metacognition in particular—
underlie failures in robustness, explainability, cooperation, and safety (Figure 2).  
 
Robustness 
 
Given the range of intractable environments in which intelligent systems must operate, 
three failures of robustness are common: A system can be unreliable—given similar 
inputs, a system can produce wildly different outputs. This could be caused by applying 
different strategies each time, or applying a strategy that produces inconsistent results. A 
system can be biased—the output is systematically wrong or non-representative in a 
predictable direction. Or a system can be inflexible—novel inputs lead to lower-quality 
outputs.  
 
Human wisdom combines object-level and metacognitive strategies to adapt robustly 
across environments. Object-level strategies like heuristics can be beneficial because 
they sometimes outperform analytic optimization by avoiding data overfitting [19], 
especially in novel, out-of-distribution contexts (but see [38]). These strategies are 
supported by wise metacognition, which helps reasoners to learn new information from 
other perspectives and discern its relevance, to balance the competing urges to simplify 
and optimize, and to avoid catastrophic error by checking the plausibility of a strategy’s 
output. 
 
For similar reasons, wise AI would be more robust in all three senses. It would be more 
reliable: Its monitoring processes would evaluate whether it is sensible to use different 
strategies in comparable situations and reject excessively inconsistent strategies. It would 
also be less biased: Since biased outputs usually result from biased inputs, a wise AI 
would reflect on its training data or models of the world, identifying sample deficiencies in 
its training data (perhaps requesting additional data), and understanding the causal 
process by which biases resulted (correcting for that bias). Finally, wise AI would be more 
flexible: It would moderate its confidence in novel situations, and would reduce, manage, 
and navigate uncertainty. 
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Explainability 
 
Opaque AI can produce puzzling outputs, difficult-to-diagnose errors, and barriers to 
collaboration [1]. Although cognitive scientists disagree about the extent of introspective 
access in humans [39], all theories agree that metacognition is necessary for justifying 
decisions to ourselves and others. Thus, wise AI would likely be more explainable. 
 
One possibility is that, in humans, consciously accessible metacognitive strategies guide 
behavior. When we report our thought processes, we are reporting observations. For 
instance, the decision to moderate confidence in a prediction could be caused by a 
conscious recognition of ignorance, which can then be reported. The explainability 
problem is then reduced to selecting which of those observations to report, that is, which 
are the most relevant causal antecedents of the output. 
 
On the opposite extreme, the mind may be “flat” [40]—it does not contain hidden depths 
of reasons that can be uncovered through introspection. When we report our thought 
processes, we report inferences (“stories”), not observations. The reasoner observes the 
outputs of her strategies and reasons backwards to their possible causes [41]. These 
inferences may often be incorrect [42], yet they are often useful justifications that, when 
expressed, constrain future thought and behavior. Since metacognition itself is not 
observable but only inferable, explainable AI would need to generate a useful narrative 
to make sense of its own actions—itself a metacognitive process. 
 
Recent work suggests that even using techniques such as chain-of-thought [43] or 
metacognitive prompting [44] (Box 2), models confabulate insight rather than genuinely 
introspect, generating explanations not “faithful” to their underlying reasoning. Under the 
classical view, we would hope that techniques for improving the introspective accuracy of 
metacognition would yield more faithful explanations; if the mental flatness view is correct, 
all we can hope for is more useful post hoc reconstructions. 
 
Cooperation 
 
AIs increasingly behave within larger networks, requiring both AI–AI cooperation (e.g., 
autonomous vehicles negotiating traffic) and AI–human cooperation (e.g., surgical 
robots), and influencing human–human cooperation (e.g., social media content curation). 
Cooperative AI [2,45] examines how AI can benefit all parties involved by navigating 
barriers to understanding, communication, and commitment. Wise object-level and 
metacognitive strategies are critical to how humans solve these problems, suggesting the 
same may be true for AI.  
 
Cooperation requires understanding the social dynamics of the situation, including the 
likely actions taken by others. Since those actions depend on the beliefs and goals of 
agents, social understanding requires theory-of-mind [46], including the tacit ability to 
form joint plans to coordinate behavior [47]. In humans, this is accomplished through 
object-level strategies such as first-person simulation (putting oneself in the other’s 
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shoes) [48] and third-person, theory-based reasoning (e.g., assuming that the agent is 
rational [49]).  
 
Cooperation depends equally on communication—selecting and sending information to 
potential partners. Incoming information must be filtered to act on what is useful and 
ignore what is misleading or irrelevant [50]. Even young children develop object-level 
strategies for evaluating sources—tracking cues such as accurate past testimony and 
conflicts of interest [51]—and more sophisticated reasoners can check whether the 
reasoning itself is valid [52]. Such “epistemic vigilance” mechanisms make credible 
communication among humans possible: Without a means of assessing a 
communication, the risk of exploitation would undermine trust. 
 
Cooperation can unravel when long-term incentives diverge, so humans have evolved 
ways to make credible commitments. Third-party social judgments—introducing potential 
punishment and reputational risk—impose external costs on defection [53], while 
emotions like shame and guilt impose internal costs [54]. Humans sharing a cultural and 
psychological context can assume these costs as common ground, promoting credible 
commitment.  
 
Wise metacognition is required to effectively manage these object-level mechanisms [55-
56]—resolving conflicts among strategies (e.g., when accuracy cues diverge), assessing 
their appropriateness (e.g., whether one can evaluate a chain of argumentation), and 
seeking appropriate inputs (e.g., knowing the capabilities of the other counterparty). This 
last point is particularly important for cooperative AI, which could overestimate the abilities 
of humans or lack common ground such as a shared emotional system.  
 
Safety 
 
Concerns about AI safety span the prosaic to the cataclysmic [3,57]. For now, the main 
safety risks are simply that systems that we come to rely on fail us—a shoddy surgical 
robot, incompetent tax advice, or biased parole algorithm. Machine metacognition can 
help to avoid such failures [58]. AIs with well-calibrated confidence can target the most 
likely risks; appropriate self-models would help AIs to anticipate failures; and continual 
monitoring of its performance would facilitate recognition of high-risk moments. 
 
Some worry, however, that in the future, superintelligent machines will pose an existential 
risk to humanity if their goals are not ‘aligned’ with ours [59]. This concern arises from two 
observations: (i) Predefined goals are likely to be mis-specified or become obsolete, and 
(ii) a powerful AI could be difficult to curtail if it aggressively pursued the wrong goals. 
Bostrom [59] illustrates both points in his parable of the paperclip-maximizing AI that 
converts the Earth into paperclips and kills all humans in its way. 
 
The goal of AI alignment [3] is to prevent such mismatches between the goals of an AI 
and its users—an exceedingly difficult task due to the many assumptions that are 
unspoken and potentially unshared. Wisdom is crucial to navigating such problems—first, 
because goal-specification is a prototypical example of an intractable problem for which 
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we deploy wisdom; and second, because humans rely on ‘common sense’ wisdom to fill 
in such unspoken assumptions and make tacit agreements [60]. 
 
Indeed, we suspect that engineering wise social interaction—in addition to or perhaps 
instead of alignment—may be necessary to achieve alignment’s goals. Alignment faces 
not only technical problems, but conceptual ones. Who should we align AI to? People 
differ in their goals (e.g., believing GenAI should solely aim to provide accurate 
information versus avoiding the reinforcement of harmful stereotypes) and values (e.g., 
cross-cultural and religious differences in maximizing happiness vs. liberty) [61]. Should 
we increase the average human well-being, its sum, or care for the whole biosphere? And 
why assume that today’s values are the right ones, given profound shifts even over recent 
history [62]? Aligning AI to current values would risk reifying those values as “the right” 
values, stalling future social progress.  
 
A two-pronged, wisdom-oriented approach may be more promising. 
 
First, AIs must themselves implement wise reasoning—aligning them to the right object-
level and metacognitive strategies rather than to the “right” values. For example, one 
object-level strategy may be a bias toward inaction (not executing an action if it risks harm 
according to one of several possibly conflicting human norms), which in turn requires 
metacognitive regulation (learning what those conflicting perspectives are and avoiding 
overconfidence).  
 
Second, we must consider how AIs fit into a broader institutional ecosystem. Institutions 
like governments and markets address the ‘alignment’ problem that we humans have—
ideally channeling our discrepant interests and values into socially productive directions. 
It is useful to think of AI not merely as an external tool influencing society but as a new 
type of agent within society, embedded in pairwise interactions and, increasingly, our 
broader institutions. If channeled effectively through institutions, metacognitively wise AI 
can enhance social evolution rather than undermine it. Both human and artificial agents 
in society should continue to allow our values to evolve toward a shared reflective 
equilibrium [63]—bringing situation-specific judgments and general moral principles into 
alignment with one another through iterative adjustments. 
 

How might we build wise AI? 
 
Before considering how we can build wise AI, first consider how nature has built us to be 
wise. We suspect that metacognitive abilities are primarily evolutionary adaptations built 
into the architecture of the human brain, being fundamental across any context, whereas 
object-level strategies are primarily acquired through experience, including socialization 
and didactic learning, due to their great situational variability. While acknowledging the 
role of development, culture, and self-reflection for metacognition [64-65] and biological 
evolution for object-level strategies [66], we take “object-level = development” and 
“metacognition = evolution” as a starting point. If so, this suggests that implementing 
object-level and metacognitive wisdom may require different strategies. 
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In humans, object-level strategies like heuristics are typically acquired through trial-and-
error and social learning. Since wise heuristics are often domain-specific, exhaustively 
specifying these rules is likely doomed for the same reasons that rule-based expert 
systems in AI failed. Instead, allowing AI systems to learn from experience [67] and from 
others [68] may be more promising. 
 
The analogy to the human case suggests, however, that experience alone is unlikely to 
suffice for training metacognition. One problem is that in typical AI training, a loss function 
is minimized, which is defined over the model’s outputs rather than its reasoning. 
Although this may indirectly select for sound decision-making strategies, the poor 
explainability of many state-of-the-art models makes it difficult to determine what those 
strategies are; an output may please a human judge for the wrong reasons. Such a 
system would often emulate the decisions of a wise human, but would not itself be 
metacognitively wise. 
 
How might one get around this problem? Optimistically, standard LLM training techniques 
could be modified. For example, a two-step training process could be implemented in 
which a model is first trained for wise strategy selection directly (e.g., correctly identifying 
when to be intellectually humble) and then training them to use those strategies correctly 
(e.g., carrying out intellectual humble behavior). Alternatively, one could present models 
with benchmark cases, request them to produce both their metacognitive strategy and 
their output, and then reward only the correct combination of strategy and output [69]. In 
either case, models could be trained against what a wise human would do or against the 
acceptability of its explanations for its choices. 
 
Perhaps, however, no amount of training will get current models to human-level 
metacognition, just as no amount of language exposure will get a squirrel to talk. On this 
view, the “innate” architecture of current models is not up to the task. LLMs work by 
generating the next token (i.e., word or word part) based on the input in its context 
window. At first, this input comprises the user’s prompt; after the model is run to generate 
the first token in its response, this token is added to the context window, and the model 
is re-run to generate the second response token, and so on. This process does not involve 
feedback from later layers to earlier ones and it is backward-looking—it predicts one word 
ahead based on its input and output-so-far, rather than explicitly planning ahead. This 
process can yield surprisingly intelligent outputs—and even some degree of planning 
(e.g., rhyming in a poem [70])—given enough parameters and data. Yet, given their lack 
of explicit planning, perhaps it is unsurprising that LLMs struggle with metacognition, 
which requires reflecting on one’s thoughts and devising strategies to regulate them. 
Changes to model prompting and architecture may be required, not just changes to 
training. Box 2 describes some ongoing efforts in this spirit, while Table 1 lists some more 
speculative ideas. 
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Table 1: Engineering Wiser AI via Metacognition 
 

Conceptual idea Possible implementations 

1. Explicit metacognitive checkpoints and 

error detection loops 

Integrate explicit reflective checkpoints into AI 
decision-making processes, forcing the AI to 
periodically evaluate coherence, reliability, and 
confidence in its reasoning. Implement continuous 
error detection loops where an AI system revises 
internal strategies upon encountering prediction 
failures or contradictions. 

Introduce specific computational modules at 
defined decision points (e.g., transformer layers in 
LLMs) that assess output uncertainty (entropy, 
calibration error) and coherence metrics 
(consistency with past outputs).  
 
Implement error detection using confidence 
thresholds learned from validation data. For 
instance, pause execution to reassess decisions 
whenever model confidence falls below calibrated 
uncertainty thresholds, forcing conditional re-
generation or seeking external verification. 

2. Epistemic source tagging and reliability 
updating 
 
Implement structured metadata that explicitly 
encodes epistemic reliability for training data 
sources. Allow systems to dynamically update 
their trust in data sources (provenance and 
lineage) based on consistency of predictions and 
feedback, akin to human epistemic vigilance 
mechanisms.  

Precompute and embed metadata vectors 
capturing reliability indicators (e.g., historical 
accuracy, domain expertise scores, publication 
credibility metrics) alongside raw tokens or data 
points.   
 
Train AI systems to dynamically adjust reliability 
scores using a simple online Bayesian updating 
mechanism: sources whose information frequently 
results in erroneous outputs or internal 
contradictions receive lowered reliability scores, 
reducing their influence during inference. 

3. Hierarchical and reflective reasoning 
architectures 
 
Employ hierarchical architectures inspired by 
cognitive models (e.g., ACT-R [118], SOAR 
[119]), where a metacognitive layer explicitly 
monitors and selects object-level strategies. 
Develop explicit reflective subsystems designed to 
audit internal consistency and logical coherence 
of reasoning outputs, promoting effective “sanity 
checking.” 

Implement cognitive-architecture-inspired 
hierarchical models, using explicit controller 
modules (meta-policy networks) to govern lower-
level task-specific modules: a) Hybrid 
symbolic/sub-symbolic approaches (e.g., 
OpenCog Hyperon [120], ACT-R style modules); 
b) Reinforcement learning hierarchical controllers 
(e.g., FeUdal networks [121]) 
 
Introduce standalone “auditor” modules trained 
explicitly to critique primary outputs for internal 
consistency, logical coherence, or sensitivity to 
constraints. For instance, chain-of-thought 
prompting [96] or future advanced reasoning 
modules explicitly trained as reasoning auditors. 

4. Transparency via metacognitive narration 
 
Design systems capable of transparently narrating 
their internal metacognitive reasoning (“thinking 
aloud” protocols) to users, aiding explainability 
and making reasoning easier to audit and debug. 

“Thinking Aloud” protocols: Implement explicit 
model training on explanatory datasets or devise 
new chain-of-thought approaches, which generate 
explicit narration of metacognitive reasoning steps 
in understandable language.  
 
Interactive debugging & auditing interfaces: Build 
interactive visualization tools displaying model 
uncertainty, reasoning trails, or decision 
checkpoints to users or system auditors.  

5. Distributed and social metacognition 
 

Multi-agent epistemic vigilance: Multiple 
independent AI agents work collaboratively, 
requiring agreement or consensus for outputs on 
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Leverage multi-agent reasoning and collective 
decision-making, analogous to human reliance on 
socially distributed cognition. Implement epistemic 
cross-checking and adversarial debate between 
multiple AI systems to mitigate individual AI 
overconfidence and misinformation propagation. 
 

critical tasks. Concrete architectures: Multi-agent 
RL (MARL) [122], decentralized autonomous 
organizations (DAO)-inspired decision-making 
[123]. 
 
Debate-based metacognitive cross-checking: AI 
reasoning outputs must pass adversarial debates 
or cross-examinations from independently trained 
AI debaters before being finalized. Example 
frameworks: OpenAI’s debate-style AI safety 
approach [124], Anthropic’s Constitutional AI 
approach [125]. 

6. Scheduled off-line replay & consolidation 
 
Use off-line periods for AI systems to consolidate 
and “reflect” on prior model runs, akin to one 
possible function of the human default mode 
network [65,126]  

Allocate compute to periods during which outward 
action pauses while the model regenerates latent 
trajectories, pits alternative chains of thought 
against each other (self-consistency / debate), 
and refreshes its calibration curves before the 
next on-line cycle. 

 
Evaluating Machine Wisdom 
 
Once we build a wise machine, how will we know it? Wisdom is context-sensitive, so a 
benchmark input must contain sufficient detail to match the rich context of a real-world 
situation. Moreover, since wisdom is about the reasoning underlying strategy selection, 
any evaluation procedure must judge not only the outcome but the precipitating process. 
 
Existing benchmarking work in metacognition has focused on the calibration of 
confidence judgments [29,71]. An advantage of this narrower domain is that it is much 
more tractable than the perspectival metacognitive strategies we have discussed here, 
with well-developed methods that even work in non-human animals [72], lend themselves 
to computational modeling [73], and are able to separate performance on the cognitive 
versus metacognitive component of a task [71,74]. Nonetheless, these tasks are domain-
specific, often constrained to well-defined laboratory environments, and do not yet 
capture the richness of everyday intractable problems that wise judgment handles. 
 
To make progress, let’s consider how other rich, complex constructs have been 
benchmarked. One approach is to collect tasks from psychology experiments, akin to 
benchmarking theory-of-mind or analogical reasoning [75-76]. Since these tasks are 
discussed in the literature (and appear in training data), the content must be replaced with 
structurally similar but superficially different problems [77-78]. However, since these tasks 
usually measure outcomes only and provide little context, this approach cannot be 
adopted wholesale for wisdom. An alternative approach—used to benchmark explanatory 
abilities [79]—is for domain experts to subjectively evaluate the quality of the model’s 
outputs. This approach is well-suited for evaluating reasoning (rather than outcomes), but 
requires some form of quantification to compare models. 
 
One way to evaluate AI wisdom would start with tasks that measure wise reasoning in 
humans [80]. These tasks present participants with a social dilemma or a choice between 
seemingly incommensurable options, asks them to reflect on the next steps, with 
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reflections scored on prespecified criteria by human raters, such as experts. Novel and 
detailed variants of such scenarios could be presented to AIs, with their performance 
scored by either human raters or by other models (if their scores converge) [81]. It would 
be important to include problems that agentic AIs might confront in the future (e.g., 
whether to execute a debatably ethical request), to ensure they can reason wisely not 
only about humans but about themselves. 
 
Ultimately, the wisdom of increasingly autonomous AIs will be judged by human users 
and stakeholders. Prior benchmarking is a crucial start, but there is no substitute for 
interacting with the real world. Given this intrinsic limit on our ability to evaluate wisdom 
ex ante, this integration with the world must proceed slowly to minimize risks. 
 

Concluding Remarks 
 
Building smarter machines comes with risks: AI with advanced capabilities might pursue 
undesirable goals. Is there a parallel concern about the unintended consequences of 
building wiser machines? 
 
Perhaps not. Empirically, humans with wise metacognition show greater orientation 
toward the common good, including cooperation and responsiveness to others [55] (Box 
1). Perhaps wise AI would have these qualities too. 
 
Yet, an important ambiguity arises here about which we can only speculate: Although 
current AI may not be wise, what shape would a future AI’s wisdom take?  
 
One possibility is that AI and human wisdom might sharply diverge. Human metacognition 
serves largely to economize scarce cognitive resources [82-83], and many biases may 
be side-effects of solving this constrained optimization problem [84-85]. Given the more 
abundant computational resources of wise AI, this optimization problem may look very 
different from humans’—AIs might rationally invest far more effort. Conversely, humans 
outsource much of our cognition to the social environment (as in the division of physical 
or cognitive labor [86-87]), including knowledge-generating institutions that are ever-
evolving. Distributed cognition of this sort is not yet a dominant paradigm in AI and it is 
unclear what its (dis)advantages are compared to an extensive, integrated knowledge 
base. 
 
Conversely, perhaps AI wisdom would converge considerably with human wisdom. AI 
wisdom also faces computational constraints, since compute can be costly. Moreover, 
heuristics work for AI for the same reasons as they work for humans: When we lack 
complete information, heuristics can perform well by implementing sensible, robust 
defaults. Finally, AIs may come to join our social environment—and perhaps reap some 
of the same social cognitive advantages as humans—as AI is increasingly integrated into 
human institutions [88]. 
 
Given these considerations, uncertainty remains (see Outstanding Questions). What if 
we tried and failed to build wise AI? What if the characteristics of wise AI differ from those 
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of a wise human, to the detriment of humans? To these concerns we have three 
responses. 
 
First, if the alternative were halting all AI progress, building wise AI would introduce added 
risks. But compared to the status quo—advancing capabilities at a breakneck pace 
without wise metacognition—the attempt to make machines intellectually humble, 
context-adaptable, and adept at balancing viewpoints seems clearly preferable. 
 
Second, at least in the medium term, AI will not act autonomously but will remain a 
collaborative tool to be used by and for humans, supporting rather than replacing human 
wisdom. In this sense, understanding how humans and AIs might work together to 
produce wise or foolish decisions becomes a crucial research agenda.  
 
Finally, the qualities of robust, explainable, cooperative, and safe AI will amplify one 
another. Robustness facilitates cooperation (improving confidence from counterparties) 
and safety (avoiding failures in novel environments). Explainability facilitates robustness 
(aiding human intervention through transparency) and cooperation (more effective 
communication). Cooperation facilitates explainability (accurate theory-of-mind about 
users) and safety (implementing shared values). Wise metacognition can lead to a 
virtuous cycle in AI, just as it does in humans. We may not know precisely what form wise 
AI will take—but it must surely be preferable to folly. 
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Glossary 
 

● AI alignment: Ensuring that AIs pursue the goals intended by (“aligned with”) their 
human users.  

● benchmark: A set of standard tasks on which AIs can be compared to one another 
and to humans for a given capacity. 

● commitment: The ability to make a credible promise that will be kept at a later time, 
particularly as a means of incentivizing a mutually beneficial cooperative agreement. 

● context window: The sliding window of text that a GenAI model has access to (can 
“remember”) when formulating its output. 

● conflict resolution process: A type of metacognitive process that selects the best 
strategy when object-level strategies conflict. 

● cooperative AI: AI that is able to pursue shared goals—with other AIs or with 
human users—through abilities including social understanding, communication, and 
credible commitment. 

● decision technologies: Organized procedures for making decisions, such as 
formal calculation. 

● explainable AI: AI that can be effectively understood by users, for instance because 
the AI can effectively communicate its decisions and reasoning to users. 

● heuristic: An object-level strategy that produces a solution to a problem without 
conducting a full analysis, typically by using a subset of the available information.  

● input-seeking process: A type of metacognitive process that seeks the inputs 
required for object-level strategies to work. 

● intractable problem: A problem that does not lend itself to analytic techniques such 
as optimization. 

● metacognitive strategy: A strategy that is used to manage other (especially object-
level) strategies, including by seeking the required inputs, resolving conflicts among 
strategies, and monitoring the plausibility of outcomes. 

● narrative thinking: An object-level strategy in which an individual constructs a 
causal and analogical model of a situation in order to understand a situation, predict 
how it will unfold, and evaluate potential choices. 

● object-level strategy: A strategy that is used to produce a potential solution to a 
specific problem or task, such as a heuristic, narrative, or analytic procedure. 

● outcome-monitoring process: A type of metacognitive process that checks 
whether outcomes of the selected object-level strategy are plausible (also called 
“sanity checking”). 

● perspectival metacognition: A subset of metacognitive skills for managing and 
integrating perspectives on a situation. 

● robust AI: AI that works effectively in novel environments because it is reliable 
(similar inputs yield similar outputs), unbiased (not systematically mistaken), and 
flexible (able to generalize to novel inputs). 

● safe AI: AI that avoids risks associated with harmful failures, which can include both 
incompetence (e.g., errors because the AI is not robust) or malevolence (e.g., 
malfeasance because the AI is not aligned). 
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● wisdom: A suite of abilities used to solve intractable problems, comprising both 
metacognitive strategies (e.g., intellectual humility) and object-level strategies (e.g., 
culturally transmitted heuristics). 

 
 

 

Outstanding Questions 
 

● How might wise AI inform—and be informed by—the cognitive science of human 
wisdom? For instance, how can computational modeling of human wisdom 
(including object-level and metacognitive strategies) and efforts to engineer 
machine wisdom be mutually enlightening? 

● What is the best approach to formalizing wise reasoning in mathematical 
approaches to AI robustness, explainability, cooperation, and safety? 

● How might the give-and-take of conversation between humans and AI lead to a form 
of shared wisdom? How should this potential for collaborative metacognition inform 
the design of AI systems? 

● Might AI wisdom exceed human wisdom? If so, how would we humans know? 
● How would the mass adoption of wise AI impact society? For example, could this 

lead to offloading of metacognitive labor, leading to a decline in human wisdom? Or 
could wise AI act as a cognitive prosthetic to enhance human wisdom in practice? 

● Could wise AI be subverted to malicious ends? Might wiser AI counter this problem, 
or exacerbate it? 

● What can we learn about existential AI risks by studying wise and unwise human 
decision-making and institutional design around other existential risks such as 
nuclear weapons? 

● Where would AI not benefit from wise metacognition—for instance, because the 
benefits are marginal relative to economic, environmental, or computational costs? 

● How would metacognitive AI systems scale up? How would the further integration 
of wise AI into human institutions impact the functioning of those institutions and of 
AI itself? 

● What further considerations would be required to embody metacognition in robots? 
 

 


