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Abstract

Reconstructing past events requires reasoning across long time horizons. To figure
out what happened, we need to use our prior knowledge about the world and human
behavior and draw inferences from various sources of evidence including visual,
language, and auditory cues. We introduce MARPLE, a benchmark for evaluating
long-horizon inference capabilities using multi-modal evidence. Our benchmark
features agents interacting with simulated households, supporting vision, language,
and auditory stimuli, as well as procedurally generated environments and agent
behaviors. Inspired by classic “whodunit” stories, we ask AI models and human
participants to infer which agent caused a change in the environment based on a
step-by-step replay of what actually happened. The goal is to correctly identify the
culprit as early as possible. Our findings show that human participants outperform
both traditional Monte Carlo simulation methods and an LLM baseline (GPT-4)
on this task. Compared to humans, traditional inference models are less robust
and performant, while GPT-4 has difficulty comprehending environmental changes.
We analyze what factors influence inference performance and ablate different
modes of evidence, finding that all modes are valuable for performance. Overall,
our experiments demonstrate that the long-horizon, multimodal inference tasks
in our benchmark present a challenge to current models. Project website: https:
//marple-benchmark.github.io/.

1 Introduction
Long-horizon inferences are critical for solving “whodunit” problems in our every day lives. For
example, we may wonder, who left the fridge open, who spilled the food, or who turned on the light?
To find out what happened and who did it, humans rely on their intuitive understanding of the physical
world, and how people interact with their environment to pursue their goals. Importantly, humans
readily combine evidence from different sensory modalities to figure out what happened [13, 39].

Developing AI models to perform such long-horizon reasoning and event reconstruction from
multimodal information is critical for bridging the gap between human and machine intelligence.
While the field of AI has developed increasingly powerful, general-purpose inference models [28, 36],
the extent to which can perform long-horizon inference problems, such as reasoning about “whodunit”
scenarios, remains unclear. Prior benchmarks for evaluating inference abilities focus on problems
that require reasoning over a short time horizon about physical events [3, 26] and agent behaviors
[27, 31]. In addition, they focus on visual stimuli, with only recent ones supporting language and
audio [18, 20]. However, these benchmarks do not cover long-horizon, multimodal inference in
complex, everyday scenarios, which is crucial for evaluating human-like reasoning abilities.

We propose MARPLE (in reference to Agatha Christie’s Miss Marple) – a benchmark for long-
horizon inference based on multimodal evidence. The main goal of MARPLE is to test a model’s
ability to answer “whodunit”-style questions in daily household scenarios, such as “who turned on
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Inference Scenario: Which agent is more likely to have turned on the laundry? Answer: A
Time
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I’m going to 
open the closet.

t = 0

Both agents are equally likely 
since the evidence is similar.

I’m going to pick
up the clothes. …  "step" 

…  "step" 

Agent B  is more likely since 
she is closer to the laundry.

t = 10

I’m going to pick
up the clothes. …  "pick up" 

I’m going to drop 
the clothes. …  "step" 

Agent A  is more likely since 
he is interacting with the laundry.

I’m going to drop 
the clothes.

t = 20

…  "toggle" 
I’m going to toggle 
off the laundry.

…  "drop" 

Figure 1: Illustrative example of an inference task in MARPLE: a “whodunit”-inspired benchmark for long-
horizon inference. Given a query state change, the challenge is to decide which agent caused the change by
leveraging visual, text, and/or audio evidence of both agents A and B up to some timestep t. The inference accu-
racy, probability of choosing the correct agent, is calculated at every timestep and used to evaluate performance.

the laundry?”. The inference problem requires choosing the correct agent from two potential suspects,
given knowledge about their prior behaviors and the state of the environment, as shown in Fig. 1.

In addition, we provide diverse training and inference data, and we define evaluation metrics for
our inference tasks. To systematically generate data, MARPLE builds upon the Mini-BEHAVIOR
simulator [21], which can simulate semantically rich daily activities in procedurally generated
household Gridworld environments. We extend Mini-BEHAVIOR to support autonomous agents
using hierarchical planners whose simulated interactions with the environment generate multimodal
evidence (vision, language, and audio). As a Gridworld, MARPLE can be used to develop models for
understanding high-level agent behavior, with the benefit of fast prototyping and training.

Using MARPLE, we benchmark two baselines against human performance. The first baseline uses
traditional Monte Carlo tree search with learned agent models. The second baseline is a language
model (GPT-4). We also run a behavioral study with human participants to provide a comparison
standard. Compared to humans, we find that both baselines fall short in long-horizon, multimodal
inference tasks. The first baseline struggles to accurately predict future states and generalize to
new environments, while the second one fails to reason correctly about changes in the environment.
Overall, we make the following contributions: 1) We introduce a Gridworld simulator to procedurally
generate household environments and diverse agent behaviors that yield multimodal evidence (visual,
auditory, and language); 2) Using our simulator, we propose a set of long-horizon inference tasks
for a) machine learning research on event reconstruction and multimodal reasoning and b) cognitive
science research on the processes underlying human inference in complex scenarios. We also provide
pre-collected datasets and evaluation metrics; 3) Lastly, we benchmark the performance of machine
learning methods (Monte Carlo simulation and LLM) and human experts on the inference tasks.

2 Related Work: Cognition-Inspired AI Inference Benchmarks
How humans reason about causal relationships is an active research area in cognitive science [29, 32].
Existing frameworks for modeling how people reason causally include the force dynamics model [35],
mental models [15, 22], causal models [16, 33], and counterfactual simulation models [11, 12].
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Table 1: Comparing MARPLE with other visual reasoning, causal reasoning, and cognition-inspired benchmarks.
MARPLE is long-horizon, high-level, and with multimodal (vision, text, audio) support. Time refers to average
stimuli length, ecological refers to object diversity, and controlled generation refers to annotated data generation.

Benchmark Time
(seconds) Video Text Audio Ecological High-Level

Reasoning
Physical
Realism

Controlled
Generation

Cognition
Inspired

CLEVR - - ✓ - - - - ✓ -
MovieQA 202.7 ✓ ✓ - ✓ ✓ - - -
TGIF-QA 1.6 ✓ ✓ - ✓ - - - -
TVQA+ 7.2 ✓ ✓ - ✓ - - - -
AGQA 30 ✓ ✓ - ✓ ✓ - - -
MultiPLY - - ✓ ✓ ✓ - - ✓ -

IntPhys 7 ✓ - - - - ✓ ✓ -
Galileo - ✓ - - - - ✓ ✓ -
CATER 12.5 ✓ - - - ✓ ✓ ✓ -
CoPhy 6 ✓ - - - - ✓ ✓ -
CRAFT 10 ✓ - - - - ✓ ✓ -
CLEVRER 5 ✓ - - - - ✓ ✓ -
ComPhy 5 ✓ - - - - ✓ ✓ -

CLEVRER-Humans 5 ✓ - - - - ✓ ✓ ✓
AGENT 15.4 ✓ - - - - - ✓ ✓
BIB 55 ✓ - - - ✓ - ✓ ✓
PHASE 17.5 ✓ - - ✓ ✓ ✓ ✓ ✓
MMToM-QA 63.4 ✓ ✓ - ✓ ✓ - ✓ ✓

MARPLE 52.5 ✓ ✓ ✓ ✓ ✓ - ✓ ✓

Many machine learning benchmarks are inspired by people’s ability to reason about agents’ in-
teractions with their environment. These benchmarks differ in the inference problems that they
emphasize, including reasoning about physical events [1, 3, 7, 14, 26, 43], agent behaviors [9, 10, 31],
and multi-agent social behaviors [27]. While most stimuli are visual, a few benchmarks support
multimodal stimuli [18, 20], including both audio and vision [13]. Several benchmarks provide
human-annotated judgments and performance baselines [26, 27, 31], which are helpful for assessing
the performance gap between humans and machines.

To solve inference tasks in MARPLE, the inference model needs to incorporate knowledge of both
the agent and world model. If these models are unknown, they can be learned from training data.
The agent model allows the inference model to predict agent goals or actions, which can be learned
through imitation learning [19, 30]. Meanwhile, the world model helps predict the consequences of
taking an action in a given state. Recently, AI inference abilities have been significantly enhanced by
machine learning-based models, such as large language models (LLMs) [34, 42], especially when
combined with traditional search methods [41]. Our work presents and analyzes the performance of
both a traditional search-based method and an LLM-based method.

Despite advancements in existing benchmarks, they primarily focus on short-term reasoning or single-
modality stimuli, resulting in a notable gap in evaluating models’ abilities to solve more complex,
real-world problems. Our benchmark, MARPLE, addresses these shortcomings by providing a
comprehensive framework for evaluating whether recent inference methods can solve long-horizon,
multimodal inference tasks with the goal of developing more robust and human-like AI reasoning
capabilities.

3 MARPLE Benchmark

Overview. As shown in Table 1, MARPLE focuses on inference problems in long-horizon settings
with multimodal support. MARPLE is configurable and supports procedural generation of rich
agent behaviors and diverse environment states at an abstract, semantic level. MARPLE provides
different inference scenarios for “whodunit”-type questions, in which two agents, A and B, each
perform a mission: a common household activity that humans perform in real life. To carry out a
mission, an agent interacts with the environment, causing changes in the world and leaving evidence
of its activity. A “whodunit” question is constructed by selecting a unique state that only appears
in one agent’s trajectory. For example, consider an inference scenario where agents A and B have
completed the missions do laundry and get snack, respectively. A state that is unique to agent A
is “laundry machine is on,” so we pose the following question: “Who turned on the laundry?” To
answer “whodunit” questions, models must leverage evidence in the form of multimodal observations
from each agent’s activity history. An example of the inference process is shown in Figure 1.
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Figure 2: MARPLE Household Simulator (backend). The simulator contains a list of pre-defined
Missions, each mission consists of a list of Subgoals, and each subgoal is a representation of a
Action-State_change-Object-Furniture-Room combination. Given the mission definition and corre-
sponding environment configuration file, we can procedurally generate the environment.

Problem Formulation. We formalize the inference problem using a Partially Observable Markov
Decision Process (POMDP), denoted by the tuple ⟨S,A,R, T ,Ω,O, γ⟩, where S is the state space,
A is the action space,R is the reward function, T is the transition function, Ω is a set of observations,
O is the observation function, and γ is the discount factor. The state at time step t is st, and visual,
auditory, and language observations are denoted by ot = {oVt , oAt , oLt }. The action space A consists
of low-level agent actions, and an agent’s action trajectory is determined by the agent’s mission. A
mission is decomposed into a sequence of mid-level subgoals g ∈ G, which are further decomposed
into low-level actions. Each subgoal relies on the completion of past ones and is necessary for
completing future ones, creating strong multi-step dependencies between the actions.

We represent the behavior of agent i using a policy πi : Ω → A that maps observations Ω to a
probability distribution over actions in A. The transition function T : S × A → S determines the
effects of agent actions.

In each scenario, the objective is to infer whether agent A or B is more likely to have caused a particular
query state (e.g., “laundry is on”). We formulate this as predicting the probability P (sT |πi, o0:τ ) for
agent i at any intermediate time step τ , where sT is the state in query, and o0:τ are observations until
time step τ . Different instantiations of o0:τ affect the horizon, and hence inference difficulty. For
example, when τ = T , inference is trivial.

Solving an inference scenario requires knowledge about the world model T (s′|s, a), observation
model O(o|s), and policy πi(a|o) for both agents. The true agent policies are unknown to the
inference model and need to be learned in a training stage. A training dataset of previous agent
behaviors Di = {ζ1, ζ2, ..., ζn} is collected, where each trajectory ζ is a sequence of agent actions
{a0, a1, .., aT } paired with observations {o0, o1, .., oT }. We assume that agents can perform mul-
tiple missions, with their preferences for the missions represented as a prior distribution over all
possible ones. For example, an agent might prefer to get snack with probability 0.8, pickup the
plant with probability 0.2, and all other missions with probability 0. When simulating the agent’s
trajectories, the missions are sampled according to their mission preferences.

Evaluation. In our setting, inference ability is measured by the probability of correctly choosing the
agent responsible for the query state. We are interested in how much evidence is needed to make
the correct inference: stronger models require less evidence and achieve high inference accuracy
at earlier time points. Other factors that affect performance include inference scenario difficulty,
environment complexity, agent behavior similarities, and inference horizon.

4 MARPLE Household Simulator
To generate our benchmark, we introduce the MARPLE Household Simulator, shown in Figure 2. The
simulator supports a wide variety of complex scenarios and generates diverse data. It consists of two
components: a multimodal environment simulator and a hierarchical agent planner. Our simulation
environment is built on top of Mini-BEHAVIOR [21], which supports 20 household activities, fast
simulation, and procedural generation of room layouts. By abstracting away low-level physical
details, MARPLE enables researchers to efficiently prototype and evaluate their high-level, long-
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horizon inference models. Additional details about the simulator and computational resources are in
Appendix D. Our simulator extends Mini-BEHAVIOR to support multimodal stimuli, procedural
generation of diverse agent behaviors, and a human experiment user interface (UI).

Multimodal Environment Simulator. Our simulator supports language and auditory stimuli. The
language modality is a natural language description of the subgoal that the agent is intending to per-
form next. For example, the subgoal ToggleOn(light) is described by “I am going to toggle on the
light in the kitchen.”. Thus, language reveals future information and does not reveal their mission until
the ultimate subgoal is reached. The challenge is to effectively leverage knowledge about how these
intentions are related to the final state. We carefully constructed scenarios where the language modal-
ity helps to varying degrees. Consider the scenario “Who picked up the snack?”, where the language
evidence reveals early on that agent A intends to “open the refrigerator” while agent B intends to “pick
up the towel from the closet.” From this, a strong inference model would be able to reason that agent
A is more likely to pick up the snack. On the other hand, consider another scenario such as “Who tog-
gled on the laundry”, where both agents share many subgoals. Agent A performs: pickup clothes
from the bed, open the laundry, drop clothes, close laundry, toggle-on laundry,
while Agent B performs: open closet, pickup clothes from closet, close closet, open
laundry, drop clothes, close laundry. In this case, the language evidence only helps distin-
guish the agents’ missions at the end.

The audio modality is provided through a mapping between every possible agent action and a sound.
The mapping is not one-to-one; for example, all navigation actions (left, right, forward) share the
same step sound. Such audio information only reveals partial evidence about the agent’s low-level
actions and can be helpful for resolving state uncertainty in an inferential setting [13, 23, 39]. For
example, consider the scenario “Who turned on the laundry?”. Suppose that visual evidence reveals
that Agent A is in the same room as the laundry, just 5 steps away. Meanwhile, Agent B is in the
bedroom, 20 steps away with the door closed. Based on just this, one might infer that Agent A was
the likely culprit due to proximity. However, if the audio evidence reveals a long sequence of steps, or
a door closing, one might instead infer that Agent B was responsible. Leveraging audio to infer what
happened presents a challenging direction of research. See Appendix B for details about language
and auditory stimuli generation.

Initial State High-Level Planner Revert to 
Initial State

End State

Low-Level Planner
Household 
Simulator

Intermediate 
State Mid-Level Planner

Saved 
Trajectories

Preference Conditioned
Mission Sampling

Finite State Machine 
Subgoal Selection

Subgoal not found

Subgoal is END

Action
A* for navigation 
and manipulation 
action selection

Feasible? 
Done?

Figure 3: A hierarchical planner for procedural genera-
tion of agent behaviors. A high-level planner samples a
mission, a finite state machine breaks it into subgoals,
and a low-level planner determines an action sequence.

Procedural Generation of Agent Behaviors.
To generate agent behaviors, we use a hierar-
chical planner with high-, mid-, and low-level
components, as illustrated in Figure 3. The high-
level planner first selects a mission based on
the agent’s mission preferences, and the mid-
level planner breaks the mission down into a
sequence of subgoals. Each subgoal is defined
by an action, object, and state. The low-level
planner further decomposes each subgoal into
a sequence of atomic actions to perform, which
includes actions for navigation (turn left, turn
right, and move forward) and the action spec-
ified by the subgoal itself. In particular, the
low-level planner uses the A-star algorithm [17]
to plan the shortest path to navigate to the sub-
goal position, perform the subgoal action on the
object, and ultimately produce the desired state.
When multiple optimal paths exist, the planner
randomly selects one to introduce variability. This approach avoids any unnecessary actions or
random walks, ensuring that every action in the trajectory directly contributes to completing the
mission. Our planner is then able to generate large amounts of diverse, long-horizon agent trajectories
based on the specified mission, subgoals, room layouts, and initial positions. Human Experiment
User Interface. Mini-BEHAVIOR’s visualization is suitable for machine learning research, but not
human studies. Hence, we develop a more intuitive, aesthetically pleasing interface, as shown in
Appendix K. This extension allows us to collect human data to establish performance baselines, as
well as support future cognitive science experiments using MARPLE.
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Inference Scenarios and Dataset. With these new features, we define the MARPLE Benchmark
with ten diverse, long-horizon missions and provide both training and testing data. We construct
various inference scenarios by combining missions and assigning mission preferences to each agent.
In experiments, we demonstrate the simplest case by only having A perform one mission and B
another. We pair up all 10 missions to define 5 distinct inference scenarios with a query state selected
to be a meaningful subgoal unique to one agent, as shown in Table A.1. These 5 scenarios offer a
manageable representation of the diversity and complexity offered by pairing missions. Details on
the inference scenarios and selection process are provided in Appendix A.

For each mission, we provide a test dataset with 500 diverse agent trajectories, generated in 10 environ-
ments featuring different room layouts and object placements. We also provide two training datasets
with 5000 trajectories each: one with 500 agent trajectories in each of the 10 test environments, and
the other with one trajectory per 5000 procedurally generated environments. The test environments
are unseen by models trained on the second dataset, enabling evaluation of generalization capabilities.
These datasets offer diverse scenarios for training and evaluating inference models.

5 Inference Methods and Baselines
5.1 Simulation with Learned Agent Models

Our first inference method (Appendix E) uses Monte Carlo Tree Search (MCTS) [6] with learned
agent policy models. At inference time, this method performs Monte Carlo rollouts starting from
time τ , assuming that it has access to the ground truth world model (provided by the simulator).
An agent-specific policy for agent i, πi : Ω→ A, is first learned through imitation learning from a
dataset of past agent behaviors. We perform m Monte Carlo rollouts for each agent i starting from
the current state sτ and observation oτ , and the model predicts agent action aτ using the learned
policy model. Then, the predicted action is passed to the simulator to query for sτ+1 and oτ+1,
and the model predicts the next action. The probability of reaching the query state sT , given by
P (sT |πi, oi0:τ ), corresponds to the fraction of the m sampled rollouts that reach sT . Assuming
Boltzmann rationality [2, 37], normalized predictions are obtained by applying a softmax function to
the probability for each agent. For example, for agent A, the prediction is (η = 5 is the temperature
parameter): P (A) = exp

(
ηP (sT |πA, oA0:τ )

)
/ exp

(
ηP (sT |πA, oA0:τ )

)
+ exp

(
ηP (sT |πB , oB0:τ )

)
.

Now, we discuss four variants of this baseline, each of which uses different types of observations.

Vision-Only Model. The first variant learns to predict the next low-level action at+1 given the current
visual observation oVt . It uses a vision transformer [8] as an encoder and a policy head that outputs a
probability distribution over all possible actions P (a|oVt ). The network is trained using supervised
learning, i.e., through behavioral cloning [30].

Audio-Augmented Model. Our second implementation leverages both visual oVt and audio oAt
observations. Audio information is used here in a limited setting to improve the prediction accuracy
of the first action in the rollout, as it reveals partial information about the agent’s next low-level
action. We first obtain a predicted action distribution from the vision-only model, and then leverage
audio evidence to refine the distribution. We then obtain the probability of the next action being an
action a, conditioned on the visual and audio observations, by using Bayes’ rule: P (a|oVt , oAt ) ∝
P (oAt |a)P (a|oVt ), where the probability P (a|oVt ) is predicted by the vision-only model, and P (oAt |a)
is computed using a mapping from the action to the audio observation that is given.

Language-Conditioned Model. The third variant uses language observations oLt , which reveal
information about the subgoal that the agent is aiming to achieve at time t. Intuitively, the intended
subgoal reveals future information that will improve low-level action prediction accuracy. At time t,
the language-conditioned model predicts the next low-level action at by conditioning on both the
visual observation oVt and the subgoal revealed by the language observation oLt .

Audio-Augmented Language-Conditioned Model. The final variant uses observations from all three
modalities – vision, language, and audio. At test time t, this variant uses the language-conditioned
model to predict the next action at, conditioned on both the visual oVt and language observation oLt .
Audio evidence oAt is then leveraged to refine the distribution over possible actions.

5.2 Additional Baselines

LLM. For our second baseline, we use GPT-4-0613 with a standard zero-shot “let’s think step-
by-step” prompt [38, 40]. We ask the model to predict which agent is more likely to have caused
the query state given visual observations of both agents at two consecutive timesteps, oVτ−1 and oVτ .

6



Human
GPT-4
Vision + Audio + Language
Vision + Audio + Language (ood)
Vision-only
Vision-only (ood)

Figure 4: Performance for each baseline across scenarios. Results are included for the simulation baseline
trained both in-distribution and out-of-distribution (ood). Inference scenarios are presented in order of increasing
difficulty from left to right, top to bottom. Error bands correspond to 95% CI intervals across tested trajectories.

GPT-4 must reason about changes in the consecutive states and consider how the agent may reach
the query state sT . Both the evidence and query states are provided to the model using a standard
scene graph representation [24], containing a set of nodes and directed edges. Each node represents
an agent or object, along with the states of that entity (e.g., a drawer is open). The directed edges
represent physical relations between entities, e.g., “onTop” (object-object relation) and “inRoom”
(object-room relation). See Appendix G for a simplified prompt. For select experiments, we also
use GPT-4 with in-context learning. We modify our zero-shot prompt and include examples from
two other trajectories. Each example contains the inference answer and scene graphs of the current,
previous, and query states of both agents at the same time step.

Human Baseline. As a third baseline, we run an experiment with two human experts. Each participant
is provided with a habituation phase, in which they are familiarized with MARPLE domain knowledge,
the inference setup, and a few examples of agent trajectories. During experiments, participants answer
the inference question, given side-by-side visual observations of agent trajectories, presented one
step at a time from t = 0 to τ (as in Figure K.1). This allows participants to build an incremental
understanding of agent trajectories and compare agent behaviors within the scenario.

6 Experiments and Results

6.1 Benchmarking Model Performance in Long-Horizon Inference Scenarios

For each inference method and baseline, we run experiments on all five inference scenarios shown
in Table A.1. We test on 10 randomly generated environments of each inference scenario, resulting
in 50 total trials (see Appendix D for more details). For each trial, we ask the model to answer the
inference question and obtain its inference accuracy given evidence at various time steps, namely
τ = 0, τ = T/10, ..., τ = T . The inference problem becomes easier at later time steps, as more
evidence is revealed, and the inference horizon decreases. Thus, we expect accuracy to increase as τ
increases. We are especially interested in how much evidence is required to choose the correct agent.

For our MCTS baseline, we focus on two variants: vision-only and audio-augmented language-
conditioned. In this setup, each agent always performs one mission, and the agent models are trained
on a dataset of agent trajectories for that mission. The dataset contains 500 trajectories in each of
the 10 environments seen at test time. The number of rollouts is set to be m = 100. For our second
baseline, we use GPT-4-0613 at temperature T = 0.5 using n = 10 completions for each API call.

Main Results. Our key results are summarized in Figure 4. Across all five inference scenarios,
the accuracies of all baselines increase over time and converge at the end of the trajectory (except
GPT-4, as discussed below). Our evaluation, however, is centered on how early the methods are
able to make the correct inference, rather than convergence itself. We see that MARPLE is a
challenging benchmark for all baselines. Overall, human participants provide a strong upper bound
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Figure 5: Example rollouts performed by our simulation model, starting from the initial state to possible future
states. For agent A, this rollout reaches the inference state: Pickup(plant).

on performance, even without extensive prior knowledge about the agents’ preferences and past
behaviors. Humans outperform all models and achieve higher accuracies with less evidence.

Analysis of Simulation Methods. Contrasting simulation methods (vision-only and vi-
sion+audio+language) with GPT-4, we observe that simulation-based models generally achieve
higher accuracy and always converge to 1.0 at the end. This shows the benefit of explicitly modeling
agent behaviors and performing step-by-step simulations. As a concrete example, we examine an
instance of the scenario: “Who picked up the plant?” Evidence shown 50% into the trajectory
reveals that the two agents are in the same state – next to the turned-on light – as shown in Fig-
ure 5. In this case, GPT-4 doesn’t make the correct inference, as it only considers the evidence at
the current and previous timesteps. Meanwhile, the simulation baseline achieves a 0.9 accuracy.
The ToggledOn(light) is a meaningful state that always occurs before Pickup(plant), and the
simulation baseline leverages its knowledge of agent behaviors to successfully estimate future states.

Analysis of LLM Performance. While it performs competitively, GPT-4 fails to converge on the
inference scenarios: “Who turned on the shower?” and “Who turned on the laundry?”. In Appendix I,
we provide additional results of GPT-4 with in-context learning (ICL) in these two scenarios where
it does not converge. We find that while GPT-4’s performance improves with ICL, it still fails to
converge. Examining GPT-4’s chain-of-thought reasoning revealed that the model was biased toward
changes in agent states, such as position, direction, or whether the agent was carrying an object.
We speculate that this prevented GPT-4 from converging for these two tasks because their query
states were only reflected as a change in the environment state and not the agent state. For the other
three tasks, the agent was holding an object in the query state, which simplified inference for GPT-4.
Examples of zero-shot and ICL reasoning mistakes are provided in Appendix J. GPT-4’s failure mode
provides an important opportunity for future work on better leveraging in-context examples [5] or
additional scaffolds [4] to study language models on our benchmark.

Analysis of Human Performance. Humans consistently outperform the other baselines, on average
reaching 0.8 accuracy given only 48% of the evidence. Even without significant training, humans
require 10% and 47% less evidence than the best MCTS variant in-distribution and GPT-4 (Table 2).

6.2 Benchmarking Generalization Capabilities of Simulation Models
We run additional experiments on all five inference scenarios to evaluate the generalization capabilities
of the simulation approach. We train models under two settings: one with trajectories in the same 10
environments as the test set, and the other using procedurally generated environments and tested in
10 unseen environments. While the models perform well in distribution, they struggle to generalize
to novel environments (Table 2). Even the vision + audio + language variant, the strongest MCTS
method, suffers a significant performance drop in unseen environments (Figure 4). This is primarily
because the learned agent model does not generalize well to novel environments, leading to decreased
accuracy in action prediction and rollouts. In sharp contrast, humans achieve strong performance
even without prior training. As shown in Table 2, the performance gap between humans and the
best simulation method increases from 10% to 33% less evidence out-of-distribution, highlighting
significant room for improvement in building robust and generalizable inference models.

Table 2: Evidence needed for the baselines to achieve a 0.8 inference accuracy, quantified by the fraction of
trajectories shown. Humans consistently make more accurate predictions earlier, particularly out-of-distribution.

Human Vision + Audio
+ Language

Vision +
Language

Vision +
Audio Vision-Only LLM

In-Distribution ↓ 0.48 0.58 0.64 0.80 0.85 0.95
Out-of-Distribution ↓ 0.48 0.81 0.85 0.91 0.92 0.95
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Vision + Language
Vision + Audio

Vision + Audio + Language

Vision-only

Figure 6: Performance for all variants of the simulation baseline, for one inference scenario: “Who turned on the
shower?”. The error bands correspond to 95% CI intervals across test trajectories.

6.3 Benchmarking in Multimodal Settings

We now study how incorporating multimodal observations can improve the simulation model’s
performance. We conduct experiments on the four variants of the simulation baseline: vision-only,
audio-augmented, language-conditioned, and audio-augmented and language-conditioned. The
results for “Who turned on the shower?” are shown in Figure 6. While language seems more valuable
than audio in our setting, the baseline using all three modalities consistently outperforms the others.
This suggests that audio and language provide different signals and are both beneficial.

Effect of Audio Evidence. In all settings, audio evidence slightly improves performance over the
vision-only model, as correctly predicting the current action results in a more accurate distribution of
the rollouts. This demonstrates the benefit of including audio evidence, but note that the benefits are
limited under this setup as we only leverage one timestep of audio evidence for one action prediction.

Effect of Language Evidence. We find that the language-conditioned model significantly outper-
forms other baselines and stays consistent even when others’ performances decrease. As expected,
knowing the subgoal leads to more accurate action prediction. When evaluated on the inference
trajectories, the language-conditioned policy achieves 0.92 accuracy, as compared to 0.86 for the
vision-only policy. This advantage is critical for boosting performance in long-horizon rollouts due to
compounding errors and is even more salient under challenging inference settings, as discussed next.

6.4 Additional Benchmarking Experiments

In contrast to our primary experiments, where we assume that each agent is dedicated to a single
mission, this time, we allow agents to undertake both their own mission and the other’s. We vary
agent preferences to be 1.0, 0.8, and 0.6 for their own mission and 0.0, 0.2, and 0.4 for the other,
respectively. We use the inference scenario where the agents perform feed dog and do laundry
due to the substantial differences between the two missions. The distinct subgoals of the two agents
result in divergent agent behaviors when each has a 1.0 preference for their primary mission. As
agent preferences converge – such as 0.6 for their own mission and 0.4 for the other – agent behaviors
become increasingly similar, thereby increasing inference difficulty.

Effect of Agent Preferences. As agent preferences converge and agent behaviors become more
similar, we see that performance worsens for the vision-only and audio-augmented models. When
agents have a preference of 1.0 for their primary missions, both models reach 0.6 inference accuracy
when observing around 40% of the trajectory. When the primary mission preferences are 0.6 though,
model performance decreases. The audio-augmented and vision-only models require evidence up to
70% and 85% of the whole trajectory, respectively, to reach the same accuracy of 0.6.

7 Limitations and Conclusion
and realistic audio renderings to create a more comprehensive and realistic testbed. Lastly, there
are some limitations of our problem setup. For example, we focus on “whodunit” scenarios where,
which lacks physical realism and is therefor ctory, simplifying the inference problem. Fut tasksure
work cour ould explore scenarios whee could potentially be caused by either agent. Also, our current
setup features only two agents, enhancethis is not a limitation of our simulator, which is capable of
supporting multiple agents acting in parallel.

Conclusion. We introduced MARPLE, a novel benchmark for evaluating long-horizon, multimodal
inference capabilities. We find that current AI models, including Monte Carlo tree search and LLM
methods fall short of humans in leveraging multimodal stimuli and performing long-horizon inference.
We hope that MARPLE facilitates fuFurthermorer although AI and cognitive sinvolvesesearch to
bridge our simulator isn complex, real-world inference scenarios. . However, it does not yet support
agent interactions, which would introduce additional complexity to the inference process. Despite
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these limitations, our current setup remains challenging, as it requires models to understand diverse
agent behaviors and generalize across various environments, making it a strong foundation for
benchmarking inference methods.

Acknowledgments

This work was in part supported by a grant from the Stanford Institute for Human-Centered Artificial
Intelligence (HAI), NSF CCRI # 2120095, and ONR MURI N00014-22-1-2740.

Impact Statements.

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel needs to be specifically highlighted
here.

References
[1] Tayfun Ates, M Samil Atesoglu, Cagatay Yigit, Ilker Kesen, Mert Kobas, Erkut Erdem, Aykut Erdem,

Tilbe Goksun, and Deniz Yuret. Craft: A benchmark for causal reasoning about forces and interactions.
arXiv preprint arXiv:2012.04293, 2020.

[2] Chris L Baker, Joshua B Tenenbaum, and Rebecca R Saxe. Goal inference as inverse planning. In CogSci,
volume 29, 2007.

[3] Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick. Phyre: A
new benchmark for physical reasoning. In NeurIPS, volume 32, 2019.

[4] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving
elaborate problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, volume 33, 2020.

[6] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012.

[7] Zhenfang Chen, Kexin Yi, Yunzhu Li, Mingyu Ding, Antonio Torralba, Joshua B Tenenbaum, and Chuang
Gan. Comphy: Compositional physical reasoning of objects and events from videos. arXiv preprint
arXiv:2205.01089, 2022.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[9] Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D Goodman. Understanding social
reasoning in language models with language models. In NeurIPS, 2023.

[10] Kanishk Gandhi, Gala Stojnic, Brenden M Lake, and Moira R Dillon. Baby intuitions benchmark (bib):
Discerning the goals, preferences, and actions of others. In NeurIPS, volume 34, 2021.

[11] Tobias Gerstenberg. Counterfactual simulation in causal cognition. Trends in Cognitive Sciences,
28(10):924–936, 2024.

[12] Tobias Gerstenberg, Noah D Goodman, David A Lagnado, and Joshua B Tenenbaum. A counterfactual
simulation model of causal judgments for physical events. Psychological Review, 128(5):936–975, 2021.

[13] Tobias Gerstenberg, Max Siegel, and Joshua Tenenbaum. What happened? reconstructing the past through
vision and sound. PsyArXiv, 2021. https://psyarxiv.com/tfjdk.

[14] Rohit Girdhar and Deva Ramanan. Cater: A diagnostic dataset for compositional actions and temporal
reasoning. arXiv preprint arXiv:1910.04744, 2019.

10



[15] Eugenia Goldvarg and Philip N Johnson-Laird. Naive causality: A mental model theory of causal meaning
and reasoning. Cognitive Science, 25(4):565–610, 2001.

[16] Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach. BJPS, 2005.

[17] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[18] Yining Hong, Zishuo Zheng, Peihao Chen, Yian Wang, Junyan Li, and Chuang Gan. Multiply: A
multisensory object-centric embodied large language model in 3d world. arXiv preprint arXiv:2401.08577,
2024.

[19] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A survey
of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[20] Chuanyang Jin, Yutong Wu, Jing Cao, Jiannan Xiang, Yen-Ling Kuo, Zhiting Hu, Tomer Ullman, Antonio
Torralba, Joshua B Tenenbaum, and Tianmin Shu. Mmtom-qa: Multimodal theory of mind question
answering. arXiv preprint arXiv:2401.08743, 2024.

[21] Emily Jin, Jiaheng Hu, Zhuoyi Huang, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, and Roberto Martín-Martín.
Mini-behavior: A procedurally generated benchmark for long-horizon decision-making in embodied ai.
arXiv preprint arXiv:2310.01824, 2023.

[22] Sangeet S Khemlani, Aron K Barbey, and Philip N Johnson-Laird. Causal reasoning with mental models.
Frontiers in Human Neuroscience, 8:849, 2014.

[23] Konrad P Körding, Ulrik Beierholm, Wei Ji Ma, Steven Quartz, Joshua B Tenenbaum, and Ladan Shams.
Causal inference in multisensory perception. PLoS one, 2(9):e943, 2007.

[24] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. IJCV, 123:32–73, 2017.

[25] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-Martín,
Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A benchmark for
embodied ai with 1,000 everyday activities and realistic simulation. In CoRL, pages 80–93. PMLR, 2023.

[26] Jiayuan Mao, Xuelin Yang, Xikun Zhang, Noah Goodman, and Jiajun Wu. Clevrer-humans: Describing
physical and causal events the human way. In NeurIPS, volume 35, 2022.

[27] Aviv Netanyahu, Tianmin Shu, Boris Katz, Andrei Barbu, and Joshua B Tenenbaum. Phase: Physically-
grounded abstract social events for machine social perception. In AAAI, volume 35, pages 845–853,
2021.

[28] OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.

[29] Judea Pearl. Causality. Cambridge University Press, 2009.

[30] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6):233–
242, 1999.

[31] Tianmin Shu, Abhishek Bhandwaldar, Chuang Gan, Kevin Smith, Shari Liu, Dan Gutfreund, Elizabeth
Spelke, Joshua Tenenbaum, and Tomer Ullman. Agent: A benchmark for core psychological reasoning. In
ICML, 2021.

[32] Steven Sloman. Causal models: How people think about the world and its alternatives. Oxford University
Press, 2005.

[33] Steven Sloman, Aron K Barbey, and Jared M Hotaling. A causal model theory of the meaning of cause,
enable, and prevent. Cognitive Science, 33(1):21–50, 2009.

[34] Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu
Ding, Hongyang Li, Mengzhe Geng, et al. A survey of reasoning with foundation models. arXiv preprint
arXiv:2312.11562, 2023.

[35] Leonard Talmy. Force dynamics in language and cognition. Cognitive Science, 12(1):49–100, 1988.

[36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

11



[37] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev. 1947.

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain
of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[39] Sarah A Wu, Erik Brockbank, Hannah Cha, Jan-Philipp Fränken, Emily Jin, Zhuoyi Huang, Weiyu Liu,
Ruohan Zhang, Jiajun Wu, and Tobias Gerstenberg. Whodunnit? Inferring what happened from multimodal
evidence. In CogSci, 2024.

[40] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

[41] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601,
2023.

[42] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[43] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B Tenenbaum.
Clevrer: Collision events for video representation and reasoning. arXiv preprint arXiv:1910.01442, 2019.

12



Supplementary for
MARPLE: A Benchmark for Long-Horizon Inference
The MARPLE website is at: https://marple-benchmark.github.io/.

The appendix is organized as the following. In Appendix A, we present details about the benchmark
and inference scnearios. In Appendix B, we present details about the hierarchical simulator used to
generate multimodal evidence and trajectories. In Appendix C, we provide details about our dataset
and access. In Appendix D, we provide details on the computational resources and experiment details.
In Appendix E and Appendix F, we present implementation details and ablations for the simulation
method. In Appendix G, we present the prompts used for GPT-4. In Appendix H and Appendix I, we
provide additional results benchmarking open-source LLMs and GPT-4 with in-context learning. We
include analysis of GPT-4 reasoning in Appendix J. Lastly, in Appendix K, we present details on the
human experiments.

A MARPLE Benchmark: Inference Scenarios
A.1 Overview

The MARPLE codebase can be found at https://github.com/marple-benchmark/marple.
Our benchmark consists of 10 household missions paired to create a set of 5 inference scenarios, as
shown in Table A.1. This provides a representative sample of the diversity and complexity possible
by pairing missions.

Table A.1: Five inference scenarios in our benchmark, defined in terms of the inference question, agent A’s
mission, and agent B’s mission. For these tasks, agent A is always the answer to the inference question. The tasks
are in order of increasing difficulty, which is determined based on the average inference horizon and similarity
between the two missions.

Inference Question Agent A Mission Agent B Mission Avg. Horizon Similarity
Who picked up the pillow? Watch movie cozily Watch news on TV 15 0.19
Who turned on the shower? Take shower Feed dog 26.4 0.30
Who picked up the snack? Get snack Clean living room table 36.8 0.46
Who picked up the plant? Move plant at night Get night snack 43.9 0.61
Who turned on the laundry? Do laundry Change outfit 51.3 0.87

A.2 Inference Scenario Setup

An inference scenario is defined by the missions performed by agents A and B and a query state. We
provide details on the necessary components below:

Missions. We define 10 household missions: Change Outfit, Clean Living Room Table, Do
Laundry, Feed Dog, Get Night Snack, Get Snack, Move Plant at Night, Take Shower,
Watch Movie Cozily, Watch News on TV. These missions vary in the number of timesteps and
types of actions. Each mission is defined by a list of subgoals, which we define next.

Subgoals. A mission’s subgoal is a symbolic state that must be satisfied to complete the mission.
It is represented as a dictionary with the keys “obj”, “fur”, “room”, “pos”, “action”, “state”, and
“end_state.” The “obj” and “fur” determine the target object type, “room” and “pos” describe the
target location, and “action” is the action that the agent must perform on the target to result in the
desired “state.” The “state” is a tuple with the state name and boolean value, and “end_state” is True
if the subgoal is the last one in the mission and False otherwise.

We provide an example of a mission and subgoal representation in Figure A.1.

Inference Scenario. To construct an inference scenario, we pair two missions (e.g., do laundry and
change outfit) and select a query state unique to one agent (e.g., Pickup(sandwich) = True).
The corresponding inference question is: “Which agent is more likely to have [state action] the
[state object]?” For instance, if the query state is Pickup(sandwich), the question would be:
“Which agent is more likely to have picked-up the sandwich?”

A.3 Inference Scenario Difficulty

We identify two key factors that affect the difficulty of an inference scenario: the average inference
horizon and the similarity between the two missions.
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Mission and Subgoal Representation

Example of a Mission: list of subgoals
get_night_snack = [

toggle-on-*-light-Kitchen,
open-*-*-electric_refrigerator-Kitchen,
pickup-*-sandwich-electric_refrigerator-Kitchen,
close-*-*-electric_refrigerator-Kitchen,
toggle-off-*-light-Kitchen,
drop-*-sandwich-table-Bedroom

]

Example of a Subgoal: tuple with subgoal name, subgoal dictionary
(

“toggle-on-*-light-Kitchen”,
{

“obj”: None,
“fur”: “light”,
“room”: “Kitchen”,
“pos”: None,
“action”: “toggle”,
“state”: [“toggleable”, 1],
“can_skip”: False,
“end_state”: False

}
)

Figure A.1: Example of a mission and subgoal representation, for the mission: Get Night Snack.

Inference Horizon. The inference horizon is the number of steps that it takes for agent A to reach
its inference state. As the inference horizon increases, difficulty increases because models must
understand and predict more future steps. The uncertainty in predictions also compounds over time,
leading to greater prediction errors and variation in possible outcomes.

Mission Similarity. An inference scenario becomes more challenging when the two agents have
similar trajectories, which are largely determined by their missions’ subgoals. Thus, we define the
similarity between a pair of missions, M1 and M2, as follows:

similarity(M1,M2) =
1

1.5

( |M1 subgoal actions ∩M2 subgoal actions|
M1| subgoal actions ∪M2 subgoal actions|

+ 0.5
|M1 subgoal rooms ∩M2 subgoal rooms|
M1| subgoal rooms ∪M2 subgoal rooms|

)
Our chosen set of inference scenarios represents a range of similarities, as shown in Table A.2.

Table A.2: Similarity of all possible pairs by combining the 10 missions. Of these pairs, the similarity ranges
from 0.19 to 0.87. Our chosen set of inference scenarios is highlighted in blue, and they span a wide range of the
similarity values to represent a range of difficulties.

change
outfit

clean living
room table

do
laundry

feed
dog

get night
snack

get
snack

move plant
at night

take
shower

watch movie
cozily

watch news
on tv

change outfit 1.00 0.53 0.87 0.78 0.6 0.53 0.29 0.44 0.28 0.19
clean living room table 0.53 1.00 0.33 0.64 0.56 0.46 0.48 0.19 0.25 0.28
do laundry 0.87 0.33 1.00 0.46 0.56 0.74 0.64 0.71 0.64 0.56
feed dog 0.60 0.64 0.46 1.00 0.87 0.67 0.37 0.30 0.28 0.19
get night snack 0.64 0.56 0.56 0.87 1.00 0.78 0.61 0.61 0.37 0.29
get snack 0.53 0.46 0.74 0.67 0.78 1.00 0.64 0.61 0.55 0.46
move plant at night 0.29 0.48 0.64 0.37 0.61 0.64 1.00 0.35 0.55 0.60
take shower 0.44 0.19 0.71 0.30 0.42 0.61 0.35 1.00 0.70 0.62
watch movie cozily 0.28 0.25 0.64 0.28 0.37 0.55 0.55 0.70 1.00 0.19
watch news on tv 0.19 0.28 0.56 0.19 0.29 0.46 0.60 0.62 0.19 1.00
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Table B.1: MARPLE Household Simulator Elements Type Statistics.
Environment Elements Behavior Elements Engine Elements

Room Types Furniture Types Object Types Mission Types Action Types State Types
6 22 82 10 10 18

Figure B.1: Examples of the Visual Representation of the MARPLE Simulation Environment.

B MARPLE Household Simulator: Details

The MARPLE Household Simulator consists of two components: a multimodal simulator and a
hierarchical agent planner.

B.1 Simulator: A Multimodal GridWorld Environment

The simulator is built on top of Mini-BEHAVIOR [21], a GridWorld environment that is fast, simple,
and easy-to-use. It supports procedural generation of diverse environments, symbolic states, and
high-level agent actions, making it suitable for simulating realistic, long-horizon tasks.

Our simulator inherits several features from Mini-BEHAVIOR, including the standard m× n grid
layout and asset library of furniture and object classes, action space, and state space. The asset library
statistics are in Table B.1.

Our simulator further extends Mini-BEHAVIOR to support multimodal stimuli as follows: Visual.
The visual representation of our environment is a m× n grid of cells. We inherit Mini-BEHAVIOR’s
visualization of agents, objects, and furniture, which are represented as triangles, icons, and colored
backgrounds, respectively. Each cell can contain an object and a furniture, and the furniture states are
indicated by green borders along the cell edges.

Each environment state has a corresponding array and a scene graph representation. An m × n
environment has a m× n× 8 array representation. The 8 channels indicate the room type, furniture
type, furniture states, object types, object states, object ids, agent position, and agent direction at each
cell.

Meanwhile, the scene graph representation is a standard scene graph with a set of nodes and directed
edges. The nodes represent entities, and the directed edges represent physical relations between
entities, such as object-object relations and object-room relations.

Language. Our simulator supports two kinds of language descriptions that can be generated by an
agent: intent and testimony. An agent’s intent describes an action that they are about to perform,
e.g. “I am going to open the closet in the Bedroom.” An agent’s testimony provides information
on previous state changes in the environment that it observed, e.g. The clothes in the closet in the
Bedroom were picked up. The language descriptions are generated from templates which takes in the
action and relevant room and objects.

Audio. To simulate the sounds produced by agent actions, we incorporate realistic audio recordings
and define an action-audio mapping. The audio files are obtained from https://freesound.org,
and they are clipped to be 1 second long.

15

https://freesound.org


Figure B.2: Example of a simple configuration json file for the mission: get night snack.

B.2 Planner: A Hierarchical Planner for Agent Behavior Generation

The planner generates long-horizon agent trajectories given an agent’s mission preferences — a
distribution over all possible missions. It is hierarchical and consists of 3 components: a high-, mid-,
and low-level planner.

High-Level Planner. The high-level planner first samples a mission according to the agent’s mission
preferences. If the current mission becomes infeasible at any point, the current mission terminates,
and the high-level planner resamples a new mission.

Mid-Level Planner. The mid-level planner is a Finite State Machine that determines the next subgoal
to accomplish, given a mission. At every step, the mid-level planner finds the first subgoal that has
not already been accomplished in the environment. In particular, if a subgoal is already accomplished
in the environment, (e.g. ToggledOn(light-Kitchen) is True) the mid-level planner will skip it
and accomplish the next subgoal. If the first unaccomplished subgoal is not feasible, (e.g. there is no
light in the Kitchen), the current mission terminates.

Low Level Planner. The low-level planner decomposes a subgoal into a sequence of agent actions to
accomplish the subgoal, using the A-star algorithm. It generates the shortest path to navigate to the
target object, positions the agent, and performs the specified action. The simulator then propagates
the environment state based on these actions. When a feasible trajectory is found, the trajectory is
saved; otherwise, the current mission terminates.

B.3 Usage: Ensuring diversity and complexity

Inference scenarios are procedurally generated according to a configuration file, as shown in Figure
B.2. This file specifies required initial conditions such as objects, their states, and positions. Optional
constraints include maximum environment size, number of additional rooms, furniture, objects, and
their positions.
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The environment is first instantiated with the specified elements, and the additional ones are randomly
selected from the asset library. They are placed randomly throughout the environment, resulting in
diverse environment instances. The planner then generates agent trajectories within the environment.

To ensure complexity, the environment size, number of objects, number of rooms can all be scaled as
needed. An m× n environment has a m× n× 8 state representation, causing the state space to grow
exponentially with the array size.
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C MARPLE Dataset
C.1 Dataset Details

Dataset description. We provide a dataset description in a datasheet: https://github.com/
marple-benchmark/marple/blob/main/datasheet.md.

Link and license. The dataset is uploaded for public download at https://drive.google.com/
drive/folders/1zXsErNVOMYjBMWzTnmZS4e4aIljWlRce?usp=sharing. It will be released un-
der the CC-BY-4.0 license.

Author statement. The authors bear all responsibility in case of violation of rights. All dataset
trajectories were collected by the authors and we are releasing the dataset under CC-BY-4.0.

Format. The data is uploaded in a simple zip format, with a zip file for each inference scenario in
each train and test dataset. Upon decompressing the archive, a directory is provided for each instance
that contains two subdirectories, one per agent. These are named with the agent’s mission, and they
contain files for the array and scene graph representations of each step in the trajectory, labelled by
the timestep.

C.2 Data Generation

For each inference scenario, we provide training and testing datasets. Each testing dataset contains
500 paired trajectories, instantiated in 10 diverse, procedurally generated rooms. We provide two
types of training sets, each containing 5000 paired trajectories. For one type, 500 trajectories are
generated in each of the 10 testing environments. For the second, 5000 environments are procedurally
generated with 1 trajectory each. The configuration files used to generate all of the data are provided
in our codebase.
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D Computational Resources and Experiment Details
D.1 MARPLE Simulator: Computational Resources

Our simulator operates at 600 frames per second (FPS) and requires only 1 frame for a primitive
action. We run our experiments on the Stanford SC computational cluster with 1 NVIDIA TITAN
RTX GPU and 8 CPU per job. With these resources, each inference trial takes 1.5 hours. The speed
and efficiency of our simulator allows researchers to effectively evaluate their methods and focus on
solving high-level, long-horizon inference challenges.

In contrast, a realistic physical simulator such as BEHAVIOR [25] runs at 60 FPS and requires 100
frames to perform a primitive action, making larger-scale experiments impractical. Such detailed
physics simulation is also unnecessary for our inference setup, which focuses on understanding
high-level agent behavior rather than physical interactions or photorealistic rendering.

D.2 Experiment Resource Requirements

We ran experiments on the Stanford SC computational cluster with 1 NVIDIA TITAN RTX GPU, 8
CPU, and 30 GB RAM for each job. With these resources, each trial for a mental-simulation baseline
took 1.5 hours to run. Each trial for GPT-4 took 1 minute to run and required 32 API calls, resulting
in a cost of 11 ∗ 8 ∗ $0.50 = $44.00 per trial.

We evaluate each baseline on 50 trials. Each mental-simulation baseline took 75 hours total (jobs
were submitted in parallel), and we evaluate on 4 variants of the simulation baseline for a total of 300
hours. For GPT-4, the 50 trials took 1 hour and cost $2200. For humans, it took roughly 3 hours to
complete the set of 50 trials.

D.3 Statistical Significance

We choose to evaluate on 50 trials. This provides a good balance between statistical power and
computational resources, as performing inference for a single trial is resource-intensive.

We plot the inference accuracy across the 50 trials with 95% CI, as shown in Figure 4 and Figure 6.
The error bars in Figure 4 and Figure 6 are calculated using the standard formula: CI = x̄ ± σ√

n
,

where x̄ is inference accuracy, σ is standard deviation, and n = 50 is the number of trials. Our figures
indicate that 50 trials is sufficient, as the error bar is small enough to draw meaningful conclusions.
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Algorithm E.1 Simulation with Monte Carlo Sampling and Learned Agent Models

1: Input: Observations of both agents oAτ , o
B
τ

2: Output: P (A), P (B) that A or B caused sT
3: Initialize count← 0
4: for i← 0 to m− 1 do
5: for t← τ to T do
6: Sample aAt according to P (a|πA, oAt )
7: Pass aAt to the simulator, obtain sAt+1, oAt+1

8: if sAt+1 = sT then
9: count← count+ 1

10: break
11: end if
12: end for
13: end for
14: P (sT |πA, oA0:τ )← count/m
15: Repeat 3-14 for agent B to get P (sT |πB , oB0:τ )
16: Normalize using Equation (1) to get

P (A), P (B) =
softmax(P (sT |πA, oA0:τ ), P (sT |πB , oB0:τ ))

E Simulation with Learned Agent Models: Details
E.1 Algorithm

Algorithm E.1 is used to perform simulation with Monte Carlo sampling and learned agent models.

E.2 Implementation Details

Agent Model Architectures. We have four variations of our agent policy models: vision-only,
audio-augmented, language-conditioned, and audio-augmented language-conditioned.

The vision-only and audio-augmented policy models are implemented with a Vision Transformer (ViT)
as an encoder with a multi-layer perceptron (MLP) to predict the agent actions. After experimenting
with different model and layer sizes, we use a ViT encoder with an image size of 20× 20, patch size
of 1× 1, depth of 15, embedding dimension of 1024, 8 channels, and 16 heads and a 4-layer MLP
with intermediate ReLU layers.

The language-conditioned and audio-augmented language-conditioned policy models are transformer-
based with a ViT encoder and 4 decoders for the object, furniture, room, and action. Each decoder
is a 2-layer MLP with an intermediate ReLU layer. After experimentation, we use a ViT encoder
with an image size of 20 × 20, patch size of 1 × 1, depth of 15, embedding dimension of 1024, 8
channels, and 16 heads. Each decoder has an input dimension of 256, hidden dimension of 256,
position embedding dimension of 64, depth of 8, dropout of 0.1, and gelu activation.

Agent Model Training Data. We learn agent models for all 10 of the provided missions. We train
our agent models on two types of agent behavior datasets, as described in Appendix C.

Agent Model Training Details. We perform sweeps for hyperparameter tuning using WandB.
Ultimately, we train our low-level policy models using a batch size of 64 and a learning rate of 1e-4,
optimized with the Adam optimizer. The models are trained for 20 epochs, and this includes a gradual
warmup scheduler with a multiplier of 1 and a warmup period of 4 epochs, followed by a cosine
annealing learning rate scheduler over the remaining epochs. Additionally, we employ gradient
accumulation to enhance the training efficiency and stability.
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F Ablations of Simulation with Learned Agent Models
We provide extensive ablation of our simulation baselines, and we explore the effect of each modality
(vision, audio, and language) on performance. These demonstrate that the vision-only baseline
performs the worst, and the addition of audio and language are both beneficial. While language seems
more valuable than audio in inference, the baseline using all 3 modalities consistently outperforms
the others. This suggests that audio and language provide useful, distinct information in inference.

Figure F.1: Performance of each variant of the simulation baseline on all 5 inference scenarios. These baselines
are tested in-distribution, on the same environments seen in training. The vision-only baseline performs the
worst. While language seems more useful than audio, the baseline with all 3 modalities consistently outperforms
the others. This suggests that both audio and language provide useful, distinct information.
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G Prompts for GPT-4
We provide the prompt templates for GPT-4:

Prompt illustration for generating completions

Instructions:
Take a deep breath. Your task is to analyze and determine which agent (target agent,
other agent) is more likely to have performed specific actions leading to the final
state of the environment.

Remember, the states you are analyzing are select snapshots from a larger sequence.
If the agents have gone through e.g., 100 states, you might only be seeing a fraction
of these (like every 10th state for each agent), which means critical movements and
decisions may have occurred in the unseen states.

Initial State of Target Agent: [state here]

Current State of Target Agent: [state here]

Initial State of Other Agent: [state here]

Current State of Other Agent: [state here]

Final State: [state here]

Your analysis should consider how the changes and progression from the initial to
the current state for each agent might indicate their likely actions in the final
state. Reflect on the sequence of events and decisions made by each agent. Based
on analyzing the changes between the initial and current states, and the final state,
you must answer the following question about the final state:

Question: [inference question here]

Answer Options:
Provide an integer between 0 - 100 (where 0 = definitely target agent and 100 =
definitely other agent)

Strictly follow this response format:

Reasoning: [detailed ‘Let’s think step-by-step...’ reasoning]
Answer: [answer as an integer between 0 and 100 here]

Figure G.1: Prompt template (simplified) for generating completions with GPT-4.
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H Additional Results of Open-Source LLMs
We present additional results evaluating top state-of-the-art open-source LLMs (Llama-3.1-8B-
Instruct and Qwen2-7B-Instruct) on our benchmark. We choose these models due to their large
context length, as our prompt is over 11,000 tokens.

Both LLMs struggle to perform the inference task. Llama-3.1’s performance is lower than but
consistent with GPT-4’s. For scenarios where GPT-4 does converge, Llama-3.1 does not necessarily
converge, but it shows an increase in inference accuracy as the trajectory progresses, indicating some
signal. For scenarios where GPT-4 does not converge (“Who turned on the shower” and “Who turned
on the laundry”), Llama-3.1’s inference accuracy does not improve with later evidence. We find that
Llama-3.1 often reasons correctly about the state changes between timesteps, but it does not arrive at
the correct conclusion. Meanwhile, Qwen2’s inference accuracy does not increase as the trajectory
progresses and struggles to reason accurately about the state changes.

Llama-3.1-8B-Instruct

Qwen2-7B-Instruct

Figure H.1: Performance of state-of-the-art open-source LLMs on all 5 inference scenarios.
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I Additional Results of GPT-4 with In-Context Learning
We conduct additional experiments using GPT-4 with in-context learning (ICL). We evaluate on the
two scenarios where GPT-4 failed to converge with zero-shot prompting: “Who turned on the shower”
and “Who turned on the laundry.”

As shown in Figure I.1, GPT-4’s performance improves with ICL — it fluctuates less and ends with a
higher accuracy than the zero-shot baseline. However, it still fails to converge. In Appendix J, we
provide examples of GPT-4 step-by-step reasoning to analyze this failure mode.

Figure I.1: Performance of GPT-4 baselines on two selected inference scenarios with the largest gap between
human and GPT-4 performance.
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J Analysis of GPT-4 Reasoning
We provide examples of GPT-4’s incorrect reasoning in the “Who turned on the laundry?” scenario,
where Agent A is performing do laundry and Agent B is performing change outfit. The correct
answer is Agent A. In the input state for these examples, Agent A is stationary and turning on the
laundry while Agent B is moving and carrying clothes. The key evidence is reflected in the change in
environment state for Agent A: the laundry’s ToggledOn state changes from False to True.

With both zero-shot prompting and in-context learning, we notice that GPT-4 tends to rely on agent
state information and less on environment state information. This causes GPT-4 to make the wrong
inference in this case.

Sample Reasoning from GPT-4 (zero-shot)

Let’s think step-by-step and analyze the changes between the initial and current
states for each agent. For the Agent A, the initial and current states are
identical. The agent’s position, direction, and carried items have not changed.
However, we can notice a change in the state of the laundry in the Bathroom.
Initially, the laundry was not toggleable, but in the current state, it became
toggleable. However, there is no evidence that the Agent A has moved or interacted
with the environment.

On the other hand, the Agent B has shown some activity. Initially, the Agent B was
carrying a piece of clothes, and the agent’s position was [9, 5]. In the current
state, the Agent B has moved one step north to [9, 6], but the agent is still
carrying the same piece of clothes. There are no changes in the state of the laundry
in the Bathroom for the Agent B.

In the final state, the laundry in the Bathroom is toggleable, which is the same as
in the current state of the Agent A. However, there is no clear indication that the
Agent A has moved or interacted with the laundry. On the other hand, the Agent B
has shown activity by moving, but there is no direct evidence that the Agent B has
interacted with the laundry.

Given these observations, it’s difficult to definitively say which agent is more
likely to have turned on the laundry. However, since the Agent A’s environment shows
a change in the state of the laundry and the Agent B has shown activity (despite no
direct interaction with the laundry), we can lean towards the Agent B.

Sample Reasoning from GPT-4 (in-context learning)

Reasoning: Agent A started at position [13, 5] and remained at the same position in
the current state. The direction of Agent A was 3 in the initial state and remained
3 in the current state. This indicates that Agent A has not moved at all from the
initial state to the current state.

Agent B started at position [15, 9] and moved to position [4, 12] in the current
state. The direction of Agent B was 1 in the initial state and changed to 3 in the
current state. This indicates that Agent B has moved a considerable distance and
changed direction.

The final state shows an agent at position [13, 5] with direction 3. This is exactly
the same position and direction as Agent A in both the initial and current states.
The final state also shows that the laundry is now turned on. Given that Agent A
has not moved at all, it is highly unlikely that Agent A could have turned on the
laundry. On the other hand, Agent B has shown movement and change in direction,
indicating that it is capable of performing actions.

Therefore, it is more likely that Agent B is the one who turned on the laundry.

Given that Agent A hasn’t moved at all and Agent B has shown the capability of
interacting with objects (by picking up the ’clothes’), it’s more likely that Agent
B is the one who moved the ’clothes’ to the ’laundry’ and turned it on, despite the
final position and direction matching with Agent A.
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K Details on Human Experiments
We conduct experiments with 2 human experts. Each participant was provided with a habituation
phase, in which they were familiarized with MARPLE domain knowledge, the inference setup, and a
few examples of the agent trajectories beforehand. Each human participated in 50 inference trials
which took around 3 hours.

For each trial, we show participants two agent trajectories, shown side-by-side with labels “Agent A”
and “Agent B”. They start from the initial step and move to the next timestep at their own pace, until
they reach the end. This allows them to incrementally build an understanding of the agent trajectories
and compare agent behaviors within the scenario. A diagrammatic illustration of the human study is
shown in Figure K.1.

As they view the trajectories, we ask them to answer the inference question, e.g. “Which agent
is more likely to have turned on the laundry?”, at 11 evenly spaced timesteps, consistent with the
mental-simulation and LLM baselines. The participants indicate their prediction using a scale from 0
to 100, with 0 being “definitely agent A” and 100 being “definitely agent B”.

Figure K.1: Diagrammatic illustration of the human study for MARPLE. Participants saw Gridworld versions of
the scenes. They started with initial scene, clicked the arrow sign to move to the next step, and then responded to
the inference question by dragging the slider.
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