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A B S T R A C T   

When do people say that an event that did not happen was a cause? We extend the counterfactual simulation 
model (CSM) of causal judgment (Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2021) and test it in a series of 
three experiments that look at people’s causal judgments about omissions in dynamic physical interactions. The 
problem of omissive causation highlights a series of questions that need to be answered in order to give an 
adequate causal explanation of why something happened: what are the relevant variables, what are their possible 
values, how are putative causal relationships evaluated, and how is the causal responsibility for an outcome 
attributed to multiple causes? The CSM predicts that people make causal judgments about omissions in physical 
interactions by using their intuitive understanding of physics to mentally simulate what would have happened in 
relevant counterfactual situations. Prior work has argued that normative expectations affect judgments of 
omissive causation. Here we suggest a concrete mechanism of how this happens: expectations affect what 
counterfactuals people consider, and the more certain people are that the counterfactual outcome would have 
been different from what actually happened, the more causal they judge the omission to be. Our experiments 
show that both the structure of the physical situation as well as expectations about what will happen affect 
people’s judgments.   

1. Introduction 

Suzy is on vacation and her friend Billy agreed to water her plants 
while she is away. When Suzy returns home, she is shocked to find out 
that all her plants have died. Billy forgot to water them! The verdict is 
clear: The plants died because Billy did not water them. While this 
judgment feels intuitive it raises problems for theories of causation. This 
scenario – which is familiar to causal enthusiasts – illustrates the prob
lem of causation by omission. The outcome happened because Billy 
didn’t do something. However, if we allow for non-actions (or, more 
broadly, non-events) to be causes, how can we curb the incoming 
onslaught of other omissive causes? For example, did not the plants also 
die because the Queen of England did not water them, or because the fire 
alarm sprinkler system did not go off? 

Omissions have a complicated causal status in philosophy (Beebee, 
2004; Bernstein, 2014, 2015; Hall, 2004; Lewis, 2004; Menzies, 2006; 
Schaffer, 2000). There are two major philosophical frameworks for 
thinking about causation: dependence theories and process theories. 
Counterfactual theories of causation, which belong to the first class of 
theories, analyze causal relationships in terms of counterfactual 

dependence (Lewis, 1973). According to these theories c caused e when 
both c and e happened, and when e would not have happened had c not 
happened. Counterfactual theories need not draw a fundamental 
distinction between omissive causation (when an outcome of interest 
happened as a consequence of the absence of an event) and commissive 
causation (when the outcome resulted from an event). Billy’s not wa
tering caused the plants to die because had he watered them, they would 
have survived. To accommodate the intuition that Billy was causally 
responsible but not the Queen of England, counterfactual theories have 
incorporated normative considerations (Halpern & Hitchcock, 2015; 
Hitchcock & Knobe, 2009). Expectations about what normally happens, 
or about what should happen, influence what counterfactuals are 
considered, and what counterfactuals are considered subsequently af
fects causal judgments (Kominsky & Phillips, 2019). The plants died 
because of Billy’s not watering them, rather than the Queen’s not wa
tering them, because Billy was expected to water them whereas the 
Queen was not. 

Process theories of causation (e.g. Dowe, 2000; Fair, 1979; Salmon, 
1994) analyze causal relationships in terms of spatio-temporally 
contiguous transmission of a conserved quantity. Here, c caused e 
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when c transferred some quantity, such as physical force, to e. Tradi
tionally, process theories have had trouble accommodating omissive 
causation because no force is being transmitted from the putative cause 
to the effect. However, the force dynamics model (Wolff, 2007) – a psy
chological process theory of causation inspired by linguistic research 
(Talmy, 1988) – handles omissive causation (Wolff, Barbey, & Haus
knecht, 2010). It deems absences as causal when they correspond to the 
removal of a force. That way, the force dynamics model restricts the 
scope of possible causes to those that either have exerted a force on the 
effect in the past, or that were expected to do so. 

Irrespective of which causal framework is used, there are a number of 
decisions that a causal modeler has to make in order to provide an 
adequate explanation for why a particular outcome happened. We have 
identified four sub-problems that need to be addressed (see Fig. 1). First, 
a modeler has to select what variables are relevant (“variable selection 
problem”). For any given outcome, there are typically a multitude of 
factors that may have contributed to that outcome. Furthermore, once 
omissions are allowed to be causes, there is a serious problem of causal 
proliferation – how should one decide what is causally relevant and 
what is not? Second, a modeler has to specify what values the variables 
of interest can take (“specification problem”). When saying that the 
plants died because Billy did not water them, we intuitively have the 
relevant contrasts in mind: namely, that the flowers would have sur
vived if Billy had watered them. However, specifying the relevant 
contrast is often not trivial and will affect what causal verdicts are 
reached (see Schaffer, 2005, 2010). Third, there is the problem of 
evaluating whether, and if so how, the candidate causes affected the 
outcome (“evaluation problem”). While it has been proposed that causal 
relationships are assessed via mentally simulating what would have 
happened in relevant counterfactual situations, most accounts have not 
spelled out what this process might actually look like. Finally, if more 
than one variable has been identified as a cause of the outcome, to what 
extent should the outcome be attributed to each of the candidate causes 
(“attribution problem”)? While all of these problems also arise for 
commissive causation, they are brought into greater relief when 
considering omissive causation as we will see below. 

In this paper, we extend the counterfactual simulation model (CSM) of 
causal judgment to deal with omissive causation (Gerstenberg et al., 
2021). The CSM predicts that people make causal judgments about 
physical events by mentally simulating what would have happened in 
relevant counterfactual situations. The model combines insights from 
both counterfactual and process theories of causation. From counter
factual theories, it incorporates the idea that causal judgments can be 
modeled by considering counterfactual simulations operating over a 
causal model of the situation. While counterfactual theories have 
traditionally modeled situations at a coarse level of granularity (e.g. 
using binary variables to represent the presence versus absence of 
events), the CSM draws insights from process theories that emphasize 
the fine-grained processes by which causes bring about effects (e.g. the 

physical laws that dictate how collision events play out). Gerstenberg 
et al. (2021) showed that the CSM accurately predicts people’s causal 
judgments in a series of experiments that involve physically realistic 
dynamic collision events. 

In our experiments, we show that people’s causal judgments about 
omissions are influenced by their expectations, and that this effect of 
expectations on causal judgments is explained by assuming that expec
tations influence what counterfactual simulations people consider. We 
provide a concrete mechanism of how expectations affect what coun
terfactual situations people simulate, and show that this account is 
consistent with people’s judgments. 

The paper is organized as follows: We will first discuss the four sub- 
problems any comprehensive model of causal explanation needs to 
solve: (1) the variable selection problem, (2) the specification problem, 
(3) the evaluation problem, and (4) the attribution problem. We will 
then review two existing theoretical frameworks of how people make 
causal judgments about omissions. Subsequently, we will describe the 
counterfactual simulation model of causal judgment and its extensions 
to omissive causation. We tested the model’s predictions in three ex
periments that address a subset of the four problems. Experiments 1 and 
2 address the evaluation problem. Experiment 3 additionally addresses 
the specification and attribution problem by looking at a situation with 
multiple candidate causes. We conclude by discussing limitations of the 
model, and by pointing out promising avenues for future research. 

1.1. Modeling causal explanations 

To provide an adequate explanation of why something happened, 
reasoners need to address a series of sub-problems (see Fig. 1).1 We will 
describe each problem in turn, taking the perspective of a causal 
modeler who aims to build an adequate representation of the situation. 
We assume that the causal modeler relies on the formal language of 
causal graphical models (Pearl, 2000; Spirtes, Glymour, & Scheines, 
2000). While we will describe each problem in turn, we do not mean to 
imply that there is a strict linear order in which the different problems 
are considered. In practice, the model building process is dynamic (see, 
e.g. Nyberg et al., 2021). Rather then stepping once through the four 
stages, a modeler is likely to cycle through the process several times, 
sometimes going back and forth between different sub-problems, until a 
satisfying model was generated.2 

Fig. 1. The problem of giving a causal explanation for why e+ happened can be broken down into four sub-problems. a) The variable selection problem is about what 
variables to consider as possible causes. Here, variable C was selected whereas X and Z were considered irrelevant. b) The specification problem is about what values 
the variables of interest can take on. Here, both variables are binary encoding whether an event happened (+), or did not happen (− ). c) The evaluation problem is 
about how to assess whether there is a causal relationship between the candidate variables. This relationship could be established, for example, by considering the 
counterfactual of whether e+ would have happened if c+ had not happened. d) The attribution problem is about how to determine the extent to which each variable is 
causally responsible for the outcome. In a situation in which both C and Z caused E, the question is how much responsibility each candidate cause bears for 
the outcome. 

1 These four sub-problems are not meant to be an exhaustive list of problems 
that an adequate account of causal explanations needs to address. Rather, they 
are problems that are brought into greater relief specifically when considering 
omissions as candidate causes. The distinction that we draw here between these 
problems may also not be quite as clear cut in practice. For example, the var
iable selection problem and the specification problem may be closely 
intertwined.  

2 We thank an anonymous reviewer for raising this point. 
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1.1.1. The variable selection problem 
The first decision is what variables to include in the model (Fig. 1a). 

The variable selection problem has been discussed intensively in phi
losophy (e.g. Beebee, 2004; Bernstein, 2015; Hesslow, 1988; Willemsen, 
2018). Only variables that are represented in the model are candidate 
causes of the outcome (Pearl, 2000). But what variables should be 
selected? For example, there are a large number of factors that may have 
contributed to Suzy’s flowers dying (the flowers’ need for water, the lack 
of water, the heat, …). The variable selection problem is severely 
aggravated once omissions are allowed as potential causes. Billy’s not 
watering the flowers is a cause but so is the fact that the Queen of En
gland did not water them. Allowing for omissive causation opens the 
flood gates to a proliferation of causes (cf. McGrath, 2005; Menzies, 
2004; Wolff et al., 2010). The choice of variables will determine what 
causal conclusions are reached (Woodward, 2015), and constructing the 
right model is arguably often more an art than a science (Halpern & 
Hitchcock, 2011). So, how can we justify that Billy is included as a 
variable in the model, but not the Queen of England? 

Psychologically speaking, the selection problem is the problem of 
what naturally comes to mind (Kahneman & Miller, 1986; Phillips, 
Morris, & Cushman, 2019) and, as it turns out, there are systematic 
factors that guide people’s causal selections (Byrne, 2005; Girotto, 
Legrenzi, & Rizzo, 1991; Petrocelli, Percy, Sherman, & Tormala, 2011). 
The most prominent solution to the selection problem is to consider 
normative expectations (McGrath, 2005). What people deem causally 
relevant is influenced by what they expected to happen (or what should 
have happened): people tend to cite unexpected events as causes (Hart & 
Honoré, 1959/1985). Given the circumstances of the situation, Billy’s 
not watering the flowers was unexpected, whereas the Queen’s not 
watering them was expected – unless the Queen had been mentioned, 
one probably would have never even thought of her. Several studies 
have demonstrated how events that violate statistical norms (what used 
to happen in the past) or prescriptive norms (what should happen) are 
preferentially judged causes (Hitchcock & Knobe, 2009; Kahneman & 
Miller, 1986; Kahneman & Tversky, 1982; Kominsky, Phillips, Ger
stenberg, Lagnado, & Knobe, 2015; McGill & Tenbrunsel, 2000). Formal 
models of causation have been developed in which normative expecta
tions influence which variables are deemed causes of the outcome (e.g. 
Gerstenberg et al., 2018; Hall, 2007; Halpern & Hitchcock, 2015). 

While considering normative expectations helps, it does not fully 
solve the variable selection problem (see Livengood, 2011). We believe 
that a more general solution to this problem will require considering the 
purpose of inquiry. For example, we often construct causal models with 
the communicative purpose of providing an explanation to someone else 
(Achinstein, 1983; Hilton, 1990; Keil, 2006; Kirfel, Icard, & Gerstenberg, 
2020; Potochnik, 2016; Turnbull & Slugoski, 1988). In that case, what 
variables are included in the model depends on what the speaker’s as
sumptions are about what the listener already knows (Degen, Hawkins, 
Graf, Kreiss, & Goodman, 2020). Often, the speaker’s motivation will 
also influence variable selection and model construction more generally 
(Green, 2008; Kunda, 1987; Mercier & Sperber, 2011). For example, in 
legal arguments, the prosecution and defense will likely paint different 
pictures of what happened with the goal of constructing mental models 
in the jury members that lead them to find the defendent guilty or not 
(Fenton, Neil, & Lagnado, 2013). Note that at this stage, a person may 
also consider variables that are later concluded not to have affected the 
outcome. For example, a lack of nutrients in the soil may be considered a 
potential cause, only to conclude later that this did not cause the plants 
to die. A coroner might discover traces of poison in the victim’s mouth 
and hypothesize that poisoning was the victim’s cause of death. How
ever, the autopsy might reveal that the poisoning was not responsible 
and that the actual cause of death was a heart attack that occurred 
before the poison could have entered into the victim’s bloodstream (see 
Stephan, Mayrhofer, & Waldmann, 2020). 

1.1.2. The specification problem 
Once a modeler has decided what variables to include in the model, 

they have to determine what values these variables can take on. We call 
this the specification problem (Fig. 1b). Variables could be specified 
coarsely, for example, by simply having two possible values that 
represent whether or not an event happened. Variables could also be 
defined more finely, for example, by continuously specifying when and 
where the event happened (Gerstenberg et al., 2021; Lewis, 2000; Ste
phan et al., 2020). 

Let’s assume that we have selected variables C and E, and that each 
are specified as binary variables representing whether an event 
happened (+) or did not happen (− ). For c+ to have caused e+, according 
to counterfactual theories of causation (Lewis, 1973; Paul & Hall, 2013), 
it needs to be the case that both c+ and e+ happened, and that e+ would 
not have happened if c+ had not happened.3 To make this precise, a 
counterfactual theory needs to specify what the relevant events c+ and 
e+ are, and what it means for these events not to happen. As Schaffer 
(2005) puts it, counterfactual theories are inherently contrastive. 
Accordingly, the question of whether “C caused E” is a question about 
whether “c+ rather than c− caused e+ rather than e− ”. If Billy had 
watered the plants rather than not watered them, then the plants would 
have survived rather than died. 

For positive events (“something happened”), the counterfactual 
contrast (“it didn’t happen”) is often well-defined. If Billy shot Steve (b+) 
in the actual situation, then the counterfactual contrast of Billy not 
shooting Steve (b− ) is easy to imagine. However, when what actually 
“happened” was a negative event (“something didn’t happen”), it is less 
clear what the relevant counterfactual contrast should look like. If Billy 
did not shoot Steve, how are we to imagine the event of Billy shooting 
Steve? Where would the shot have hit Steve? Would the bullet have gone 
straight through Steve’s heart, or would the bullet merely have damaged 
some muscle fibers in Steve’s arm? 

This problem is further aggravated in models featuring multi-valued 
variables for which it is even less clear what the relevant counterfactual 
should be (see Hitchcock, 1995). For example, if a variable C can take on 
values 1, 2, or 3, the question of whether C = 1 caused e+ is problematic 
because the counterfactual of what would have happened if C = 1 had 
not taken place is ambiguous. Maybe C = 2 would still have resulted in 
e+, whereas C = 3 would have resulted in e− (Halpern, 2016; Hitchcock, 
1995; Lassiter, 2017; Livengood, 2011). 

Moreover, when we consider variables that represent a person’s ac
tion, then sometimes the relevant counterfactual contrast might not be 
one between acting and not acting, but rather between what the person 
did, and what someone else would have done in the same situation. The 
law often employs the reasonable person test in cases of negligence (i.e. 
when a person failed to act). The test asks whether a reasonable person 
would have behaved in a way such that the negative outcome would 
have been avoided (Green, 1967; Hart & Honoré, 1959/1985; Lagnado 
& Gerstenberg, 2017). Similar considerations also apply to other con
texts such as evaluating sports performance (Gerstenberg et al., 2018). 
For example, when considering to what extent a basketball player is 
responsible for the team’s success, we would not consider the counter
factual of what would have happened if the team had played 4 against 5. 
Rather, we might consider what would have happened if the player had 
been replaced with a substitute player. 

Overall, just like for the selection problem, omissions render the 
specification problem more challenging. For positive events, there is 
often a single counterfactual contrast that comes to mind. In contrast, for 
negative events (i.e. events that did not happen), there are often mul
tiple relevant counterfactual contrasts. The way in which the variables’ 

3 While this definition of counterfactual dependence is overly simplistic and 
fails in situations in which the outcome is causally overdetermined (see, e.g. 
Halpern & Pearl, 2005; Lagnado, Gerstenberg, & Zultan, 2013), it is sufficient 
for our purposes here. 
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potential values are specified will affect what causal conclusions are 
reached. Judging whether C caused E depends on what counterfactual 
contrast is chosen, how this contrast is realized in one’s mental simu
lation of the counterfactual, and one’s evaluation of what the conse
quences would be. 

1.1.3. The evaluation problem 
Once the candidate variables have been selected and their potential 

values have been specified, the causal modeler needs to assess whether 
the variables of interest are actually causally related. Here, we focus on 
singular causal relationships (“Billy killed Steve.”) rather than general 
causal relationships (“Weapons kill people.”) (see also Danks, 2017; 
Stephan et al., 2020; Stephan & Waldmann, 2018). To reiterate, in order 
to determine whether the causal statement that “Steve died because Billy 
shot him.” is true, one needs to evaluate whether Steve would not have 
died, if Billy had not shot him. Often, the evaluation problem is more 
challenging for omissive causation compared to commissive causation. 
To determine whether Steve survived because Billy did not shoot him, 
we need to evaluate whether a specified counterfactual contrast (e.g. a 
shot in the stomach) would have been deadly. Maybe the bullet would 
have missed all the vital organs? Maybe Steve would have been saved by 
an ambulance?4 While the variable selection problem has received much 
attention in the context of causation by omission (e.g. Hesslow, 1988; 
Wolff et al., 2010), the evaluation problem has been largely neglected 
(but see Khemlani, Wasylyshyn, Briggs, & Bello, 2018, Experiment 4). 
The experiments we report below tackle the evaluation problem. 

Petrocelli et al. (2011) suggested that the extent to which a certain 
counterfactual is relevant is a function of both how likely we are to 
consider it, and how likely it would have changed the outcome of in
terest. They propose a model in which a counterfactual’s potency is 
determined by the product of an “if-likelihood” and a “then-likelihood”. 
Thus, a counterfactual is potent only if both its if-likelihood and 
then-likelihood are high. Petrocelli et al. show across a number of ex
periments that counterfactual potency predicts judgments of regret, 
causation, and responsibility. For example, consider the counterfactual 
statement “IF Billy had watered the plants THEN they would have sur
vived.” The “if-likelihood” expresses the degree to which the antecedent 
condition of the counterfactual is perceived to be likely (i.e. that Billy 
had watered them). The “then-likelihood” can be thought of as capturing 
the conditional probability of the outcome as specified given that the 
antecedent condition is true (i.e. that the flowers would have survived). 
Here, both the “if-likelihood” and the “then-likelihood” are high, so this 
counterfactual is potent, and accordingly Billy’s not watering the plants 
will be seen as a cause of the plant’s death. In contrast, “If the Queen of 
England had watered the plants …” is not a potent counterfactual 
because the “if-likelihood” is low (while Billy was supposed to water the 
plants, the Queen had no obligation to do so). 

While Petrocelli et al. note that the “if-likelihood” and “then-likeli
hood” are subjectively determined, they do not provide an account of 
how people generate these likelihoods (see also Wells & Gavanski, 
1989).5 We believe that people’s intuitive understanding of the domain 
of interest determines both what counterfactuals come to mind as well as 
how to evaluate what would have happened in the relevant 

counterfactual situations. To make this proposal concrete, we will focus 
here on a relatively simple physical domain. Several accounts have 
linked judgments of causation to the relevance of counterfactuals, and 
that the relevance of counterfactuals may be determined via a sampling 
procedure (Icard, Kominsky, & Knobe, 2017; Kahneman & Tversky, 
1982; Kominsky & Phillips, 2019). However, these accounts have not 
provided a concrete implementation of what this sampling process 
actually looks like. Below, we propose a model that does so. 

1.1.4. The attribution problem 
When multiple causes contributed to an outcome, how do people 

determine the extent to which each cause was responsible for the 
outcome? Even when the variable selection problem, the specification 
problem, and the evaluation problem have been solved, there is still the 
problem of attributing causal responsibility (Gerstenberg & Lagnado, 
2010; Lagnado et al., 2013; Zultan, Gerstenberg, & Lagnado, 2012). 
Most of the psychological research on omissive causation has focused on 
this attribution problem (Bello & Khemlani, 2015; Clarke, Shepherd, 
Stigall, Waller, & Zarpentine, 2015; Henne, Bello, Khemlani, & Brigard, 
2019; Henne, Niemi, Pinillos, De Brigard, & Knobe, 2019; Henne, 
Pinillos, & De Brigard, 2017; Khemlani et al., 2018; Livengood & 
Machery, 2007; Wolff et al., 2010; Wolff, Hausknecht, & Holmes, 2011). 

In many studies, the candidate causes have been selected by the 
experimenters, the events of interest are clearly specified, and the causal 
relationships are easy to evaluate. These studies show that unexpected 
events that violate statistical or prescriptive norms tend to be judged as 
more causal (Hitchcock & Knobe, 2009; Kahneman & Miller, 1986; 
Kahneman & Tversky, 1982; Kominsky et al., 2015; McGill & Ten
brunsel, 2000; Sanna & Turley, 1996). For example, when two cars 
collide at an intersection, the driver who failed to brake at the red light is 
cited as the cause rather than the driver who failed to brake at the green 
light (see Clarke et al., 2015; Henne et al., 2017). In principle, either 
driver could have avoided the accident by stepping on the brakes, but 
it’s normal for a driver to stop on a red light and to keep going when it’s 
green. Formal models of causation have been developed that explicitly 
incorporate normative expectations (e.g. Gerstenberg et al., 2018; Hall, 
2007; Halpern & Hitchcock, 2015). 

Recent work has shown that in addition to normative expectations, 
the structure of the situation also affects causal attributions, leading 
people to sometimes prefer normal over abnormal events as causes 
(Gerstenberg & Icard, 2019; Harinen, 2017; Henne, Niemi, et al., 2019; 
Icard et al., 2017; Kirfel et al., 2020; Kominsky et al., 2015; Samland & 
Waldmann, 2016). Different factors influence people’s expectations, 
including statistical information about past events, prospective norms 
about what behavior is appropriate in a given situation, as well as norms 
of proper functioning that take into account what function an artifact is 
supposed to fulfill (Hitchcock & Knobe, 2009). Expectations also influ
ence moral judgments, such as attributions of blame. Generally, we 
blame people more for failure when we expected them to succeed 
(Gerstenberg, Ejova, & Lagnado, 2011; Gerstenberg et al., 2018). Even 
young children evaluate a person refusing to help more negatively, 
when it would have been easy for the person to help (Jara-Ettinger, 
Tenenbaum, & Schulz, 2015). 

1.2. Existing theories of omissive causation 

We have argued that in order to provide an adequate causal expla
nation of what happened, a modeler has to address a number of chal
lenges. They have to select relevant variables, specify their possible 
values, evaluate the causal relationship between candidate causes and 
the outcome, and attribute the extent to which each variable was 
causally responsible for the outcome. These problems are aggravated for 
omissive causes. Currently, no computational model exists that ad
dresses all of these problems. We will now discuss two existing theo
retical frameworks for modeling causal judgments that have been 
extended to deal with causation by omission: the force dynamics model, 

4 Sometimes evaluating commissive causation may be more challenging. For 
example, considering what would have happened if a professor had not made it 
to class may be more difficult than imagining what would have happened if 
they had made it. We thank an anonymous reviewer for this suggestion.  

5 It should also be noted that it matters how these likelihoods are computed. 
Instead of computing the conditional probability p(e|c) which, when used as a 
guide for causal relationships could, for example, lead to the false conclusion 
that two effects of a common cause are directly causally related (see Hagmayer 
& Sloman, 2009), one should compute the interventional probability p(e|do(c)) 
which is sensitive to the causal relationships of the variables of interest (see 
Pearl, 2000). 
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and the mental model theory. Afterwards, we will describe our model, the 
counterfactual simulation model of omissive causation. 

1.2.1. A force dynamics theory of omissive causation 
According to the force dynamics model (Wolff, 2007; Wolff et al., 

2010, 2011), causation is characterized as an interaction between an 
agent and a patient that involves a transfer of force. Different causal 
expressions such as “cause”, “enable”, and “prevent” map onto different 
configurations of force transfer that are formalized using vector calcu
lus. For example, the force vector representations that map onto 
“caused” and “enabled” differ with respect to whether or not the agent 
and patient force vectors at the time of interaction point into the same 
direction (see Fig. 2). 

While the original model was developed to handle commissive 
causation (Wolff, 2007), Wolff et al. (2010) extended the force dynamics 
model to explain cases of omissive causation. The general idea behind 
this extended model is that causation by omission is linked to the 
removal of an actual (or anticipated) force that previously prevented (or 
would have prevented) the outcome from occurring. By linking omissive 
causation to force removal, the force dynamics model addresses the 
variable selection problem. Only those variables are potentially relevant 
that encode an actual or anticipated removal of force. To make this more 
concrete, imagine a person pushing aside a jack that is holding up a car, 
whereupon the car falls to the ground. Here, the removal of the jack 
caused the car to fall to the ground. According to the force dynamics 
model, causation by omission is embedded within a double prevention 
relationship (cf. Collins, 2000; Dowe, 2001; Hall, 2004; Schaffer, 2000). 
The removal of the jack prevented the actual force that had previously 
prevented the car from falling down. 

To illustrate a scenario in which an omission involves the removal of 
an anticipated force, consider an auto racing situation in which car A is 
headed toward the finishing line but its path is currently blocked by car 
B standing on the line. Just in time, the breakdown service car pulls car B 
with a rope and frees the way for car A to cross the line. Here, it seems 
appropriate to say that the service car allowed car A to cross the line.6 If 
the service car had not pulled car B out of the way, racing cars A and B 
would have collided. So, in this case, the service car removed the 
anticipated force that car B would have had on car A, thereby allowing 
car A to cross the line. Wolff et al. (2010) tested their model in a series of 
experiments depicting video clips of scenes like this one, and found that 
the force dynamics model correctly captures participants’ modal re
sponses of which expression best captures what happened in each clip. 

In line with the counterfactual simulation model that we present 
below, (Wolff et al., 2010, p. 193–194) argue “that people are able to 
conduct partial ‘reenactments’ of the processes that join forces in the 
world. A reenactment involves specifying the objects and the forces 
acting on those objects in a situation. It also involves carrying out a 
simulation showing what happens as a consequence of the forces acting 
on the objects. Causal reasoning is assumed to consist of such re
enactments.” Through the notion of an anticipated force, the force dy
namics model incorporates some of the machinery from counterfactual 
theories of causation. An anticipated force is a force that would have 
affected the outcome had things turned out differently. 

Grounding causation in physical forces helps restrict the set of 
candidate causes. However, it also presents a challenge for generalizing 
this causal analysis to domains that are not well characterized by 
physical forces. For example, it’s not easy to see how Billy’s not watering 
Suzy’s plants removed a force. Wolff et al. (2010) discuss cases like these 
and concur that if their analysis were to be applied to cases like these, it 
would also struggle with the variable selection problem having to rely 

on notions of normality to determine which “figurative” forces are 
anticipated (Billy) and which ones are not (the Queen). 

1.2.2. A mental model theory of omissive causation 
Another psychological theory of causal judgment that has been 

extended to handle omissive causation is the mental model theory 
(Goldvarg & Johnson-Laird, 2001; Khemlani et al., 2018). According to 
the mental model theory, people reason causally by representing mental 
models as sets of possibilities. Different causal terms such as “cause” and 
“enable” map onto different sets of possibilities. “C causes E” means that 
given C, E occurs. “C enables E” means that given C, it is possible for E to 
occur (Khemlani, Barbey, & Johnson-Laird, 2014). More precisely, the 
logical possibilities that define that “C causes E” are C ∧ E, ¬C ∧ E, and 
¬C ∧ ¬ E. The possibility C ∧ ¬ E would not be consistent with “C causes 
E”. In contrast, the possibilities that define “C enabled E” are C ∧ E, C ∧
¬ E, and ¬C ∧ ¬ E, whereas the possibility ¬C ∧ E is inconsistent. The 
theory predicts people’s reasoning errors about causal relationships 
based on a tendency to consider some possibilities but not others (see 
also Khemlani, Bello, Briggs, & Harner, 2020). For example, upon 
hearing that “C causes E” people first consider the possibility that both C 
and E happened, and they may fail to subsequently consider further 
possibilities that are consistent with the stated general causal relation
ship (e.g. that E happened although C did not happen). 

The mental model theory assumes that people make causal judg
ments by building and inspecting simulated causal relations (Khemlani 
et al., 2018). Whereas the force dynamics theory represents simulations 
via interacting force vectors, simulations in the mental model theory are 
represented as discrete possibilities. Within this framework, omissions 
are modeled by negating antecedent events. For example, the absence of 
A causes E (“Not A causes E”) is consistent with the following possibil
ities ¬A ∧ E, A ∧ E, and A ∧ ¬ E, but inconsistent with ¬A ∧ ¬ E. 

Khemlani et al. (2018) tested the predictions of their model in a 
series of experiments. In Experiments 1 and 2, participants were pro
vided with causal statements and asked to indicate which possibilities 
were consistent with the statement. In Experiment 3, participants were 
given both a causal statement (“The lack of wind will cause the fire to 
dissipate.”) and an assertion about what happened (“There is wind and 
the fire does not dissipate.”), and they were asked to say whether both 
can be true. The results of these experiments show that people’s selec
tion of consistent possibilities (Experiments 1 and 2) and their truth 
judgments (Experiment 3) are well accounted for by mental model 
theory. 

In Experiment 4, which is closest to the experiments we report in this 
paper, participants viewed physical animations of a ball heading toward 
an entrance of a tube with a Y-shaped exit. The scene also featured a 
movable gate next to the tube’s entrance, and a goal whose position 
varied between animations. Participants viewed sets of three animations 
after which they were asked to select one out of three statements that 
only differed in their causal verb (e.g. “Not closing the gate caused/ 
enabled/prevented the ball to score/from scoring.”). Participants’ se
lections were largely consistent with the predictions of the mental model 
theory, distinguishing between “omissive causation” and “omissive 
enabling”. However, participants were generally reluctant to saying that 
an omission (not opening the gate, or not closing the gate) “caused” the 
outcome to happen. 

2. A counterfactual simulation model of causation by omission 

The counterfactual simulation model (CSM) of causal judgment (see 
Gerstenberg et al., 2021) assumes that people make causal judgments 
about physical events by comparing what actually happened with the 
outcome of mentally simulating relevant counterfactual situations (see 
also Sloman, Barbey, & Hotaling, 2009). In line with Wolff et al.’s (2010) 
force dynamics model, the model assumes that “people simulate the 
processes that produce causal relationships rather than simply speci
fying the dependencies that hold between one event or state and 

6 Interestingly, it does not feel right to say that the service car caused car A to 
cross the line. We will return to the question of how to explain differences 
between causal expressions such as “caused”, “enabled”, or “allowed” in the 
General Discussion. 
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another.” (p. 215) So far, the CSM has been successfully applied to 
capturing participants’ judgments about physical events that actually 
happened (Gerstenberg et al., 2021). For example, Gerstenberg, Peter
son, Goodman, Lagnado, and Tenenbaum (2017) have shown that there 
is a close mapping between people’s causal judgments, and their sub
jective degree of belief that the outcome would have been different if the 
cause had not been present (see also Gerstenberg & Tenenbaum, 2016). 
Here, we extend the CSM to handle omissive causation by stipulating a 
concrete mechanism for how expectations affect the generation of 
counterfactuals. While our account does not address the selection 
problem, it does speak to the specification problem, evaluation problem, 
and attribution problem. 

According to counterfactual theories of causation, causal claims are 
inherently contrastive and thus subject to the specification problem (cf. 
Schaffer, 2005). That is, when asking whether C caused E, what we are 
really asking is whether c rather than c′ caused e instead of e′.7 Formally, 
we define the probability that c caused e as 

P(c→e) = P(e′

c′ |c, e). (1)  

Taking into account what actually happened (i.e. both c and e actually 
happened), we evaluate whether the alternative outcome e′ would have 
happened, if C had been set to c′ instead of its actual value c. To compute 
this probability, one needs to specify both what the relevant counter
factuals c′ and e′ are. 

We borrow this formulation of the counterfactual directly from Pearl 
(2000), who developed a theory of causation that fits well within the 
interventionist tradition of counterfactual theories (cf. Woodward, 
2003). According to interventionist theories, causal claims are analyzed 
by considering what the consequences of intervening in the putative 
causal event would have been. Roughly, c caused e if intervening on c 
would have made a difference to e (under the right circumstances).8 This 
means that, in order to evaluate the causal relationship between c and e, 
one not only needs to consider what the relevant c′ for a given c would 
have looked like, but also how c′ would have come about. What inter
vention would have turned c into c′ (cf. Gerstenberg, Bechlivanidis, & 
Lagnado, 2013; Lucas & Kemp, 2015)? 

Consider the situation shown in Fig. 3a. Both Marble A and Marble B 
enter the scene from the right, collide with one another, and Marble B 
goes through the gate. Did Marble B go through the gate because Marble 
A hit it? In this case, specifying the relevant contrasts is fairly straight
forward. Marble A’s hitting Marble B (c) rather than not hitting it (c′) 
caused Marble B to go through the gate (e) rather than miss the gate (e′). 
To generate a counterfactual in which Marble A had not hit Marble B, 

one can imagine an intervention which removed Marble A from the 
scene.9 The CSM predicts that people will say that Marble B went 
through the gate because Marble A hit it. While an observer does not 
have direct access to what the outcome in the relevant counterfactual 
situation would have been, they can use their intuitive understanding of 
physics to simulate what path Marble B would have taken if Marble A 
had not hit it (see Gerstenberg et al., 2017, for eye-tracking evidence 
that this is in fact what people do). Here, it is clear that Marble B would 
have missed if the collision had not happened (as illustrated by the 
dashed path). 

Compare this with the situation shown in Fig. 3b. Marble B enters the 
scene from the right and goes through the gate. Marble A remains sta
tionary in the corner. Did Marble B go through the gate because Marble 
A didn’t hit it? Put differently, did Marble A’s not hitting Marble B (c) 
rather than hitting it (c′) cause Marble B’s going through the gate (e) 
rather than missing it (e′)? Note how in the case of causation by omis
sion, determining what c′ should look like is less clear than in the case of 
causation by commission. While a relevant counterfactual readily comes 
to mind of what would have happened if Marble A had not hit Marble B 
(Fig. 3a), there are many relevant counterfactuals for what would have 
happened if Marble A had hit Marble B (Fig. 3b). One needs to intervene 
in the situation such that Marble A starts moving at some point in time, 
in some direction, with some velocity. In the given example, an observer 
has to first imagine one of the infinite possible situations in which 
Marble A had hit B, and then try to simulate what the consequences of 
that collision would have been. 

The pair of situations shown in Fig. 3 is analogous to the scenario in 
which Billy shoots Steve that we used to illustrate the specification 
problem. When Billy shot Steve, it is relatively easy to imagine what 
would have happened if Billy had not shot Steve (cf. Fig. 3a). However, 
when Billy did not shoot Steve, it is less clear what would have happened 
if Billy had shot Steve (cf. Fig. 3b). 

The evaluation problem is also more challenging here. Counterfac
tual simulations for omissions are more demanding than counterfactual 
simulations for physical events that actually happened. First, the rele
vant counterfactual antecedent (c′) has to be generated. It’s easy to 
imagine Marble A not hitting Marble B, whereas it’s more challenging to 
imagine Marble A hitting Marble B. Second, the consequences of the 
counterfactual intervention (i.e. the transformation from c to c′) have to 
be simulated. Again, in the case of causation by commission this involves 
simulating the trajectory that Marble B would have taken if Marble A 
had not hit it. It’s relatively straightforward to mentally simulate how 

Fig. 2. According to Wolff’s (2007) force dynamics model, causal expressions map onto configurations of force vectors. P = patient force, A = agent force, R =
resulting force, E = endstate. For example, the construction “A caused P to reach E” maps onto a configuration in which P’s initial force did not point toward the 
endstate E, and A’s force combined with P’s such that the resulting force R led P to reach the endstate. In contrast, the construction “A enabled P to reach E” implies 
that P’s force vector already pointed toward the endstate, and A’s force combined with P’s such that it reached the endstate. 

7 We use c and c′ (as well as e and e′) here instead of c+ and c− , because c 
could be a commission and c′ an omission, or vice versa.  

8 The circumstances in which this counterfactual dependence holds may be 
different from what actually happened (see Halpern, 2016; Halpern & Pearl, 
2005). 

9 Note that in its original formulation the CSM considers counterfactual op
erations on objects rather than events (Gerstenberg et al., 2021). That is, it 
imagines what would have happened if Marble A had not been present in the 
scene, rather than what would have happened if the collisions between Marble 
A and B had not happened. However, when applying the CSM to causation by 
omission, it’s important to think about the relevant events that might have 
happened. 
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Marble B’s motion would have continued in that counterfactual situa
tion (it just requires extrapolating the marble’s observed motion path). 
In contrast, for causation by omission, one needs to simulate the con
sequences of Marble A’s hitting Marble B. It’s more challenging to 
mentally simulate how such a collision would have played out. For 
example, it’s possible that Marble B would still have gone through the 
gate even if Marble A had hit it. Marble A could have only hit it lightly 
without affecting Marble B’s path much. Or Marble A could have hit 
Marble B in such a way that it would have bounced off the top wall and 
gone into the gate regardless. 

2.1. Scope of the model 

Before laying out in detail how the CSM models omissions, we want 
to clarify the scope of the model. The CSM is a model of how people 
make causal judgments about physical events (see Gerstenberg et al., 
2021). Accordingly, we restrict ourselves to settings in which partici
pants are asked about omissions in dynamic physical interactions 
involving collision events, using scenarios like the one shown in Fig. 3. 
We will speculate in the General Discussion about how the model may be 
extended to handle omissions more broadly. 

We further constrain ourselves to relatively simple situations for 
which it is feasible to implement a concrete model of the postulated 
simulation process. For example, in our setting, the relevant counter
factuals only involve simulating what would have happened if one of the 
objects in the scene had moved differently. We acknowledge that in 
many real world situations, evaluating the consequences of counter
factuals can be much more challenging, and people may lack the 
knowledge to accurately simulate how a counterfactual would have 
played out. By restricting ourselves to a simple domain, we can generate 
quantitative predictions from our model, and test these predictions 
experimentally. 

The CSM does not provide a reductive account of causation in the 
philosophical sense: it does not reduce one concept (causality) to a more 
primitive one (counterfactual dependence, e.g. Lewis, 1973). Instead, 
our model builds on interventionist theories of causality (see Halpern, 
2016; Pearl, 2000; Woodward, 2003). These theories begin with a causal 
representation of the domain, such as a system of structural equations 
that captures how the different variables in the model are causally 
related to one another. However, this general-level causal representa
tion by itself does not yet yield answers to the question of what caused 
what to happen in a particular situation. To elucidate the concept of 
actual causation, these theories consider what the consequences of hy
pothetical interventions would have been. Here we build on this work by 
applying the same kind of machinery to modeling people’s judgments 
about omissions in physical scenarios. Instead of using structural 
equations, we use a physics engine to express people’s causal 

understanding of the domain (Gerstenberg & Tenenbaum, 2017; Ull
man, Spelke, Battaglia, & Tenenbaum, 2017). And instead of defining 
interventions as a change to the value of a variable, we implement in
terventions as operations on the objects in the physics simulation (e.g. 
making a ball move in a particular way). 

There are many possible factors that influence what counterfactuals 
people bring to mind, including statistical norms (“what tends to 
happen”) and prospective norms (“what should happen”). Much prior 
work has argued that causal judgments are influenced by what coun
terfactuals come to people’s minds (Gerstenberg et al., 2021; Hilton & 
Slugoski, 1986; Icard et al., 2017; Kahneman & Miller, 1986; Kahneman 
& Tversky, 1982; Kominsky et al., 2015; Kominsky & Phillips, 2019). 
However, no work so far has tried to spell out concretely what this 
counterfactual simulation mechanism might look like. Here, we develop 
a concrete implementation of the idea that normative expectations in
fluence what counterfactual possibilities people simulate, albeit in the 
restricted domain of simple physical interactions. 

Our model predicts people’s causal judgments about events that lie 
in the past (i.e. the model targets people’s singular causation judgments, 
which concern the causes of events that have actually happened). In our 
everyday lives, causal judgments are often triggered by experiencing 
some unexpected or undesired outcome (see, e.g. Bohner, Bless, 
Schwarz, & Strack, 1988). Sometimes, we may also make prospective 
causal judgments about future events. For example, we may judge that 
not charging our phone will cause the battery to die. In this case, the 
relevant contrast is a future hypothetical rather than a counterfactual. 
While we do not look at these cases here, we believe that the same 
general principles for capturing people’s causal judgments will hold. 
People consider hypothetical possibilities by imagining an intervention 
in the situation, and then simulating what the consequences of this 
intervention would be. Causal judgments about prospective events can 
be derived by simulating and then comparing two different hypothetical 
interventions: one in which the causal event of interest took place, and 
one in which it did not. 

2.2. Modeling omissions 

We assume that people make causal judgments about omissions by 
evaluating the outcome of counterfactual possibilities that are generated 
using their intuitive understanding of the situation (cf. Kahneman & 
Tversky, 1982). On this most general level, we believe that counter
factual theories of causation are applicable for handling omissions in a 
variety of different domains that include reasoning about physical 
events as well as psychological and social events (such as Billy forgetting 
to water the plants). People’s intuitive understanding of the domain will 
dictate what counterfactuals come to mind (Billy should have watered 
the plants), and what would have happened in these counterfactual 

Fig. 3. Diagrammatic illustration of a) causation by 
commission, and b) causation by omission. In the 
causation by commission case, the question is whether 
Marble B went through the gate because Marble A 
collided with Marble B. Here, there is one relevant 
counterfactual that comes to mind – the counterfac
tual of what would have happened if the collision 
between Marble A and Marble B had not happened. In 
the causation by omission case, the question is whether 
Marble B went through the gate because Marble A 
didn’t collide with Marble B. Both the specification 
problem as well as the evaluation problem are 
aggravated here compared to causation by commis
sion. It is less clear what the relevant counterfactual 
is. There are many ways in which Marble A could 
have collided with Marble B that would have led to 
different counterfactual outcomes. And it is more 

difficult to evaluate what the consequences of Marble A colliding with Marble B would have been (the mental simulation involves reasoning about a collision event 
rather than merely extrapolating an unaffected marble’s continuing motion).   
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situations (the plants would have survived). Here, we will illustrate how 
this account works by focusing on physical events. Specifically, we 
model people’s causal judgments about dynamic collision events be
tween marbles. 

Consider the situation depicted in Fig. 4a. In the actual situation, 
Marble A did not move and Marble B went through the middle of the 
gate. Did Marble B go through the gate because Marble A did not hit it? 
To answer this question, the model simulates what would have 
happened if Marble A had collided with B. To do so, the model needs to 
determine the time t at which Marble A would have started to move, the 
direction d in which it would have moved, and the velocity v with which 
it would have moved. Once these parameters are set, the model simu
lates what would have happened. For many combinations of values for t, 
d, and v, Marble A would not have collided with Marble B. The model 
discards all such situations since it evaluates what would have happened 
if Marble A had hit Marble B. In other words, the model conditions on the 
truth of the counterfactual antecedent (i.e. situations in which the 
collision occurs). For each situation in which the two marbles collide, 
the model records what the outcome would have been – would B have 
missed the gate, or would it still have gone through the gate? The model 
then computes the probability that Marble A’s not hitting Marble B was a 
cause of Marble B’s going through the gate (cf. Eq. (1)) by calculating the 
proportion of samples in which B would have missed the gate instead of 
going through. 

2.3. Expectations shape counterfactual simulations 

An important question is what values t, d, and v should take on, 
which jointly determine what counterfactual situations are considered. 
The CSM generates counterfactual samples in two steps: a planning step 
and an implementation step. In the planning step, the CSM generates a 
set of “ideal path” counterfactual possibilities in which the causal event 
of interest happened, and the outcome would have been different from 
what actually happened. For example, Fig. 4a shows such an ideal path 
in which Marble A would have collided with Marble B, and Marble B 
would have missed the gate. In the implementation step, the CSM then 
samples one of the ideal paths and applies implementation noise to its 
execution. The figure shows two such sampled paths. 

Let us illustrate these two steps with an analogy of a pool player who 
tries to knock one of the billiard balls into the pocket. We assume that 
the player is able to accurately plan the shot. For any given goal, there 
are multiple possible shots that would bring about that goal (e.g. striking 
the cue ball at different angles with different speed and spin, etc.). 
However, the actual shot is subject to some implementation noise (e.g. 
some degree of noise in the execution of the motor movements) that 
might lead to the goal not being accomplished. We would expect an 
expert player to be more likely to make a shot compared to a novice. In 
this setting, we would model the effect that expertise has on expecta
tions by manipulating the degree of implementation noise. Whereas an 
expert has little implementation noise, a novice has more. Of course, 
experts and novices also differ in their ability to accurately plan their 
shot by mentally simulating the paths that the balls would take. For our 
purposes, we make the simplifying assumption that differences in ex
pectations can be modeled via the degree of implementation noise. 

Leaving the analogy, the CSM first generates a set of candidate 
counterfactual samples in the following way: it discretizes the space for 
the time t at which Marble A starts moving, the direction d in which it 
moves, and its velocity v. For t, the model considers all values from 0 to 
toutcome, where 0 corresponds to the time at which Marble B starts moving 
and toutcome to the time at which Marble B went through the gate (or hit 
the wall). For d, the model considers the full range from Marble A going 
straight to the left to going straight up. For v, it considers a reasonable 
range from Marble A moving slowly to Marble A moving fast. For each 
generated world, the model notes whether Marble A and Marble B 
collided, and whether B went through the gate or missed the gate. It then 
discards all situations in which the two marbles did not collide. For the 

remaining situations, the model records whether Marble B would have 
gone through the gate or would have missed it. 

To determine the probability that the outcome in the counterfactual 
samples would have been different from what actually happened, it 
uniformly samples one of the ideal paths generated in the first step and 
slightly perturbs the initial velocity vector that Marble A had in that 
sampled situation. We perturb both the magnitude and angle of Marble 
A’s original velocity vector by adding Gaussian noise to the x-compo
nent and the y-component (V′

x = Vx⋅𝒩(1, θ) and V′
y = Vy⋅𝒩(1, θ)). To 

compute P(x → y) (see Eq. (1)), the model then calculates the proportion 
of sampled paths for which the outcome would have been different from 
what actually happened. 

We assume that expectations affect what counterfactuals people 
consider, and we capture the effect of expectations on the generation of 
counterfactuals through the θ parameter. For example, if an observer has 
strong expectations that Marble A will prevent Marble B from going 
through the gate (e.g. based on prior experience), we model this by only 
introducing a small amount of noise to Marble A’s initial velocity vector 
(i.e. θ is small). If instead an observer does not have any strong expec
tations, we model this by introducing a larger degree of noise to Marble 
A’s initial velocity vector (i.e. θ is larger). 

3. Experiment 1: Expectations affect omissive causation 
judgments 

Experiment 1 tests whether the CSM captures people’s causal judg
ments for omissions in dynamic physical scenes. We look at causal 
judgments about situations in which Marble A failed to hit Marble B, and 
Marble B either went through the gate or missed it. Fig. 4 illustrates what 
the different clips looked like. In both clips, Marble A just rests still in the 
corner. In Fig. 4a Marble B goes through the gate. In Fig. 4b Marble B 
misses the gate. The CSM predicts that the extent to which people agree 
that the outcome happened because Marble A did not hit Marble B is a 
function of their degree of belief that the outcome would have been 
different in the relevant counterfactual. To test the hypothesis that 
counterfactual simulations map onto causal judgments, we ask one 
group of participants to indicate what they think would have happened 
if Marble A had hit Marble B, and another group of participants to judge 
whether the outcome happened because Marble A did not hit Marble B. 
Furthermore, we investigate how different types of expectations (sta
tistical or social) influence people’s judgments. 

3.1. Methods 

3.1.1. Participants 
517 participants participated in this experiment. 47 participants who 

either failed to answer a simple attention or memory check question 
were excluded prior to any data analysis. The attention check question 
referred to a video clip subjects were shown on a separate screen to
wards the end of the study in which both marbles went through the gate. 
Subjects were asked to evaluate the statement “Both Marble A and 
Marble B went through the gate.” (options: “True” versus “False”). The 
memory check query was presented after the attention check question. 
Subjects were asked to evaluate the statement “Marble A’s color was 
grey, and Marble B’s color was blue.” (options: “True” versus “False” 
with “True” being the correct answer). The remaining 476 participants 
(251 female, 225 male, Mage = 34, SDage = 12) who provided valid data 
received a monetary compensation of £ 0.25. 

For all of the experiments reported here, participants were recruited 
via Prolific (www.prolific.co) using the following inclusion criteria: 
minimum age of 18 years, English as native language, an approval rate 
of at least 90 percent, and no previous participation in other studies of 
this project including pilot studies. We also asked participants to 
participate only via laptop or desktop computer and not via smartphone 
or tablet because we wanted to minimize the chances that participants 
take part who are in environments that might distract them (e.g. public 
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places, subway). 

3.1.2. Design, materials, and procedure 
In the experiment, we manipulated information that affected par

ticipants’ expectations about what will happen (expectation: no expec
tations, statistical expectation, social expectation) and what actually 
happened (actual outcome: missed versus went through). Finally, we 
varied whether participants answered a causal question or a probability 
question (question: causation versus probability). All factors were 
manipulated between participants. The probability question was: “What 
do you think are the chances that Marble B would have missed [gone 
through] the gate if Marble A had hit it?” Participants provided their 
responses on a continuous slider with the endpoints labeled “very un
likely” (0) and “very likely” (100). The causal test query was: “To what 
extent do you agree with the following statement: Marble B went 
through [missed] the gate, because Marble A did not hit Marble B.” 
Participants responded on a continuous slider with the endpoints labeled 
“not at all” (0) and “very much” (100). The physical animations were 
created in Adobe Flash CS5 using the physics engine Box2D. All of the 
experimental materials, data, modeling, and analysis scripts are avail
able online at https://github.com/cicl-stanford/omission. 

3.1.3. No expectations condition 
In the “no expectations” condition, participants simply read that they 

will see an animation featuring a stage with solid walls, two marbles, A 
and B, and a gate. All participants were shown a graphical illustration of 
the scene. 

3.1.4. Statistical expectation condition 
Participants in the “statistical expectation” condition were presented 

four primer clips in which Marble A hit Marble B. Participants who later 
saw the “went through” test clip, were shown four primer clips in which 
Marble A prevented Marble B from going through the gate. In each of 
these clips, Marble B would have gone through the gate if Marble A had 
not hit it. Participants who later saw the “missed” test clip, were shown 
four primer clips in which Marble A caused Marble B to go through the 
gate. In each of these clips, Marble B would have missed the gate if 
Marble A had not hit it. For each primer clip, participants indicated on a 
continuous slider to what extent they agreed with the statement “Marble 

B went through [missed] the gate, because Marble A hit Marble B.” with 
the endpoints labeled “not at all” and “very much”. Having participants 
provide judgments about these clips ensured that they were paying 
attention to the statistical expectation manipulation. 

Based on what subjects observed in these primer clips, they should 
expect that Marble A would prevent Marble B from going through the 
gate for the “went through” test clip, and that Marble A would cause 
Marble B to go through the gate for the “missed” test clip. 

3.1.5. Social expectation condition 
In the “social expectation” condition, participants were instructed 

that the video clip will show what happened during a game of marbles 
played by two agents, Andy and Ben. Participants who later were shown 
the “went through” clip were told that it’s Andy’s job to hinder Ben’s 
marble from going through the gate. Participants who later watched the 
“missed” clip were told that it’s Andy’s job to help Ben flip his marble 
through the gate. Based on this instruction, participants should expect 
that Andy will either prevent Ben’s marble from going through, or help 
to knock it into the gate (depending on the outcome condition). 

3.2. Model predictions 

Experiment 1 manipulates prior information about what was likely 
to happen, as well as what actually ended up happening. The CSM 
predicts that people will generally agree more with the statement 
“Marble B went through the gate because Marble A didn’t hit it.” 
(Fig. 4a) than with the statement “Marble B missed the gate because 
Marble A didn’t hit it.” (Fig. 4b). Intuitively, this follows from the fact 
that, in this setting, hitting Marble B into the gate is more difficult than 
preventing Marble B from going through the gate. Put differently, a 
small degree of implementation noise added to a shot in which Marble A 
made Marble B miss the gate is still likely to lead to a miss (Fig. 4a 
bottom panel). In contrast, a small degree of implementation noise 
added to a shot in which Marble A made Marble B go through the gate 
might lead to Marble B missing the gate instead of going through (Fig. 4b 
bottom panel). In short, hitting Marble B into the gate is more sensitive 
to noise than preventing Marble B from going through the gate. 

The CSM further predicts that expectations will affect agreement 
judgments. As discussed above, we model the effect of expectations 

Fig. 4. Experiment 1 diagrams: Illustration of what 
actually happened (top) and the counterfactual 
simulation model (bottom). The diagrams illustrate 
the actual path that Marble B took, as well as an ideal 
path for a) Marble A preventing Marble B from going 
through the gate, or b) Marble A causing Marble B to 
go through the gate. The sampled paths show 
example simulations that result from applying 
implementation noise to the ideal path. Note: In a) 
Marble A would have prevented Marble B from going 
through the gate for both sampled paths. In b) Marble 
A would have caused Marble B go through the gate in 
one sample but not so in the other in which Marble B 
would still have missed even though Marble A hit 
Marble B.   
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through the θ parameter which affects how much noise is added to 
Marble A’s initial velocity vector. If Marble A is expected to prevent 
Marble B from going through the gate, this can be captured by gener
ating counterfactual samples with little noise. If less noise is added, it 
means that more of the counterfactual samples will be successful in 
generating an outcome that’s different from what actually happened. 
The model predicts that agreement judgments should generally be 
higher in the statistical and social expectation conditions compared to 
the no expectations condition. 

To sum up, we can derive the following two hypotheses from the 
CSM about participants’ causal judgments in Experiment 1: 

Hypothesis 1.1. Agreement judgments that the outcome happened 
because of the omission will be higher when Marble B went through the 
gate compared to when Marble B missed the gate.10 

Hypothesis 1.2. Agreement judgments will be higher to the extent 
that the omitted event was expected to happen (and expected to be 
successful in undoing the actual outcome). 

3.3. Results 

Fig. 5 shows participants’ causation ratings (red), probability ratings 
(blue), as well as the predictions of the counterfactual simulation model 
(CSM; black). Table 1 shows the results of a 2 (question) × 3 (condition) 
× 2 (outcome) between-participants ANOVA. There was a significant 
effect of outcome: judgments were higher when Marble B went through 
the gate than when it missed the gate, ΔM = 16.36, 95% CI [10.58, 
22.13], t(464) = 5.57, p < .001. There was also a significant effect of 
condition: judgments were higher in statistical and social expectation 
conditions compared to the no expectations condition, ΔM = 19.34, 
95% CI [13.23, 25.44], t(464) = 6.22, p < .001. Judgments in the sta
tistical expectation condition were significantly lower than in the sta
tistical expectation condition, ΔM = − 10.00, 95% CI [− 18.49, − 1.52], 
t(464) = − 2.77, p = .016. There was also a significant interaction be
tween question and condition. 

We fitted the θ parameter in the CSM to the data by minimizing the 
squared error between model predictions and averaged judgments.11 

The CSM correctly captures the difference in agreement ratings for both 
the causation and probability condition as a function of the outcome 
(Hypothesis 1.1). Judgments were higher for the “went through” clip 
compared to the “missed” clip. While the exact predictions of the model 
depend on the value of the θ parameter, the model predicts this quali
tative pattern for all values of θ > 0 (see Fig. A1 in the Appendix). 

The CSM also captures that the agreement ratings are overall higher 
in the statistical and social expectation conditions compared to the no 
expectations condition (Hypothesis 1.2). It accounts for this pattern by 
assuming that what counterfactual simulations participants sample 
differs between the conditions. To account for the data, the model ad
justs the θ parameter which determines the degree of noise that is added 
to Marble A’s initial trajectory. Consistent with Hypothesis 1.2, the best- 
fitting parameter is smaller for the social expectation condition (θ =
0.04), and the statistical expectation condition (θ = 0.08), compared to 
the no expectations conditions (θ = 0.40). The model does not predict 
the interaction effect between question and condition. As Fig. 5 illus
trates, the model only makes one prediction for both question types, 

since it assumes a direct mapping from the counterfactual probabilities 
to the causal judgments. 

3.4. Discussion 

The results of Experiment 1 support the idea that people make causal 
judgments about omissions by mentally simulating whether the outcome 
would have been different in the relevant counterfactual situation. The 
CSM correctly predicted that people would be more willing to agree that 
Marble B went through the gate because Marble A did not hit it (Fig. 4a) 
than they would be to agree that Marble B missed the gate because 
Marble A did not hit it (Fig. 4b). This prediction arises from the 
assumption that it’s easier to imagine that a collision between the 
marbles would have prevented Marble B from going through the gate 
versus knocking it into the gate. 

The CSM also captures the fact that causality and probability judg
ments were higher when participants had formed expectations about 
what would happen compared to when they had no expectations. The 
CSM explains this difference by assuming that expectations affect what 
counterfactuals people consider. Specifically, the model predicts that 
participants are more likely to simulate counterfactuals in which the 
outcome would have been different from what actually happened when 
this counterfactual is consistent with their expectations. 

In contrast to what the CSM predicted, the mapping between coun
terfactual probability judgments and participants’ agreement that the 
outcome happened because of Marble A was not perfect. For example, in 
the social expectation condition, the difference in participants’ judg
ments between the two clips is more pronounced for the causation 
question than the probability question. This suggests that there may be 
additional factors that influence participants’ answers to the causation 
question that cannot be reduced to considerations of the relevant 
counterfactual. For example, in the social expectation condition, one 
may have considered that Player B’s initial failure to get the marble on 
the right track (Fig. 4b) signals an exceptionally bad performance, and 
thus Player A’s failure to correct this mistake is seen as less causally 
relevant. 

Experiment 1 highlighted both the specification problem and the 
evaluation problem. Even though it is clear what type of event needs to 
be considered in the counterfactual (namely Marble A’s hitting Marble B 
instead of sitting still), there are many ways in which this event could 
have been realized. A generative model of the situation is required to 
simulate the physical process by which the causal event of interest had 
come about as well as what the consequences of the collision between 
the marbles would have been. Furthermore, the problem of causal 
attribution did not arise in this scenario because there was only a single 
candidate cause. Although, as we mentioned above, in the social con
dition one could argue that player B carries some of the responsibility in 
the “missed” condition for having shot the marble poorly. We will return 
to the attribution problem in Experiment 3. 

The CSM predicts that the difference between participants’ judg
ments for the two test clips arises from the fact that Marble A’s hitting 
Marble B would have been more likely to have made a difference to the 
outcome when Marble B went through the gate compared to when it 
missed the gate. However, it is also possible that people generally pro
vide higher causal judgments when a positive outcome comes about as 
the result of an omission (“causation by omission”) as compared to a 
negative outcome (“prevention by omission”). In Experiment 2, we 
investigated whether such a general asymmetry between omissive 
causation and omissive prevention exists, or whether, as predicted by 
the CSM, this difference disappears once the specification problem and 
the evaluation problem do not arise. 

4. Experiment 2: No asymmetry between omissive causation and 
omissive prevention for well-specified contrasts 

The goal of Experiment 2 was to rule out that the observed difference 

10 Note that this is not a general prediction that judgments for positive out
comes will be higher than judgments for negative outcomes. Instead, this pre
diction derives specifically from the fact that given the setup of the situation, it 
is more likely that a collision between Marble A and Marble B would prevent 
Marble B from going through the gate (see Fig. 4a), than it would cause Marble 
B to go through the gate (see Fig. 4b).  
11 Given the low number of data points (n = 6, the means for the probability 

and causality question in the three different expectation conditions), we refrain 
from reporting quantitative model fits. 
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between the “went through” and “missed” clips in Experiment 1 came 
about because people generally treat omissive causation differently from 
omissive prevention. The CSM only predicts a difference between two 
situations when the relevant counterfactual was more likely to be 
different in one situation compared to the other. Hence, our strategy in 
Experiment 2 was to hold this probability constant while manipulating 
the actual outcome. To achieve this goal, we simply replaced Marble A 
with a wall. To model the “missed” and “went through” situations in this 
setup, we varied whether or not the wall blocked the gate while the 
marble headed towards it (see the diagrams in Fig. 6). Participants rated 
how much they agreed that the marble went through the gate (or did not 
go through the gate) because the wall did not move. 

4.1. Methods 

4.1.1. Participants 
65 participants (25 female, 40 male, Mage = 33, SDage = 13) 

completed the experiment and received a monetary compensation of £ 
0.25. 

4.1.2. Design, materials, and procedure 
The instructions were similar those used in the “no expectations” 

condition of Experiment 1. Participants saw an illustration that made it 
clear that the wall can only be in two different positions, either right in 
front of the gate or in the upper left corner of the stage and thus fully out 
of the way (see Fig. 6). We manipulated between participants whether 
the marble went through the gate or missed the gate (see Fig. 6). Par
ticipants viewed the test clip after having read the instructions, and then 
indicated on a continuous slider to what extent they agreed with the 
statement: “The marble went through the gate because the wall didn’t 

move.” or “The marble didn’t go through the gate because the wall 
didn’t move.” depending on the outcome with the endpoints of the slider 
labeled “not at all” (0) and “very much” (100). 

4.2. Model predictions 

The CSM predicts that participants’ causal judgments about omis
sions are determined by what they believe would have happened in the 
relevant counterfactual situation in which the event had taken place. For 
the situations depicted in Fig. 6 there is little to no uncertainty about the 
counterfactual outcome – it is clear that the outcome would have been 
different, had the wall moved (assuming that the wall would have 
moved fully out of the way before the marble arrived). Because it is clear 
that the outcome would have been different in the counterfactual situ
ation from what actually happened, the CSM predicts that participants’ 
causal judgments should be very high in both cases (and their should be 
no difference between the situation in which the marble went through 
the gate versus when it missed the gate). 

Hypothesis 2.1. Agreement judgments that the outcome happened 
because the wall did not move (the omission) will be equally high for 

Fig. 5. Experiment 1 results: Agreement judgments 
for the “went through” clip and the “missed” clip (see 
top left and top right panel in Fig. 4, respectively). 
Large red dots indicate mean causation judgments, 
and large blue dots indicate mean probability judg
ments. Error bars are 95% bootstrapped confidence 
intervals. Small colored dots indicate individual re
sponses (jittered along the x-axis for visibility). White 
dots indicate model predictions. Sample sizes are 
shown at the top. (For interpretation of the references 
to color in this figure legend, the reader is referred to 
the web version of this article.)   

Table 1 
Experiment 1 results: Main effects and interactions in a between-participants 
ANOVA with Question (probability, causality), Condition (no expectations, 
statistical expectations, social expectations), and Outcome (went through, 
missed) as predictors. Note: η̂2

G = generalized eta-squared, MSE = mean squared 
error.  

Effect F df1 p η̂2
G  

Question 0.97 1 .326 .002 
Condition 23.29 2 <.001 .091 
Outcome 30.99 1 <.001 .063 
Question × Condition 4.46 2 .012 .019 
Question × Outcome 2.91 1 .089 .006 
Condition × Outcome 0.36 2 .695 .002 
Question × Condition × Outcome 0.97 2 .381 .004 

df2 = 464, MSE = 1,023.20. 

Fig. 6. Experiment 2 results: Participants’ agreement ratings. In the “not 
blocked” condition (left), the wall was out of the way. In the “blocked” con
dition (right), the wall was in front of the gate. Large red dots indicate mean 
responses with 95% bootstrapped confidence intervals. Small black dots indi
cate individual responses (jittered along the x-axis for visibility). (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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both the case in which the ball went through the gate, and in which the 
ball did not go through the gate. If there was a general tendency to treat 
omissive causation differently from omissive prevention, then partici
pants’ judgments should be greater for the clip in which the wall did not 
block the marble compared to the clip in which the wall blocked the 
marble. 

4.3. Results 

Fig. 6 shows participants’ agreement judgments for the two clips. As 
predicted by the CSM (Hypothesis 2.1), participants gave very high 
causal ratings for both the “not blocked” clip (M = 87.52, SD = 21.62) as 
well as the “blocked” clip (M = 89.00, SD = 23.21). Participants’ ratings 
did not differ significantly between the clips, ΔM = − 1.48, 95% CI [−
12.60, 9.63], t(63) = − 0.27, p = .790. 

4.4. Discussion 

The results of Experiment 2 suggest that there is no general asym
metry between judgments of causation by omission versus prevention by 
omission in the physical setting that we’ve explored. Instead, once it is 
clear what would have happened in the relevant counterfactual situa
tion, participants agree that the outcome happened because the event of 
interest did not come about. We did not ask participants to evaluate the 
probability of the outcome in the counterfactual situation this time. 
However, participants’ causal judgments are well explained by 
assuming they had little to no uncertainty about the counterfactual 
outcome. Whereas there were many possible ways in which Marble A 
could have hit Marble B in Experiment 1, in Experiment 2 the space of 
possibilities was drastically reduced such that the specification problem 
did not arise anymore. The wall can only be in two possible states 
(although there might still be some uncertainty about when it would 
move and how fast). The evaluation problem did not arise either since 
it’s easy to mentally simulate what the outcome would have looked like 
had the wall moved instead of remaining still. The results also show that 
there is no general outcome effect on omissive causation judgments. For 
example, it’s not the case that causal judgments for omissions are greater 
when the outcome was positive (or negative). 

Together, the results of Experiment 1 and Experiment 2 support the 
view that causal judgments about omissions are sensitive to people’s 
degree of belief about what would have happened in the relevant 
counterfactual situation. Both experiments have addressed the specifi
cation problem and the evaluation problem. Experiment 3 investigates 
participants’ judgments in a setting that features multiple candidate 
causes. In this setting, the attribution problem arises of how much each 
candidate was responsible for the outcome. 

5. Experiment 3: Attributing causal responsibility for multiple 
omissions 

When a positive outcome did not happen because of several omis
sions, how do people decide which of the omissions was the most 
responsible? As alluded to in the introduction, a prominent suggestion 
for how to address this attribution problem is to consider the role of 
expectations (e.g. McGrath, 2005). Accordingly, we deem those omis
sions as causally relevant that we expected to happen. From the 
perspective of the counterfactual simulation model, expectations affect 
what counterfactuals come to mind (cf. Kahneman & Miller, 1986; 
Kahneman & Tversky, 1982). Hence, the idea is that omissions for which 
it is easier to imagine that they could have undone the outcome will be 
regarded as more causally relevant (cf. Gerstenberg et al., 2011; Petro
celli et al., 2011). Experiment 3 tests this prediction. 

5.1. Methods 

5.1.1. Participants 
104 participants (49 female, 55 male, Mage = 33, SDage = 11) 

participated in this pre-registered experiment (https://osf.io/fu9rq). 
Concerning the sample size rationale, a pre-test with 62 participants 

yielded an effect of d = 0.63 for the observed mean difference of the 
blame ratings from the midpoint of the scale (in the expected direction). 
The observed effect for the difficulty ratings was even higher. With a 
sample of around 60 participants, an effect of d = 0.63 can be detected 
with more than a 99% probability using a directed one-sample t-test. We 
wanted to be more conservative and planned the main study with a 
smaller effect of d = 0.4, which has the power to be detected with 99% 
probability if a sample of n = 100 is tested. To have the same number of 
participants in each of the eight conditions (created by counterbalancing 
certain aspects of the test clip), we tested n = 13 participants per con
dition (n = 104 participants total). 

5.1.2. Design, materials, and procedure 
We instructed participants that they were going to watch a short 

video clip of a marbles game. Participants learned that the game was a 
team game in which two players (“Player Green” and “Player Blue”) try 
to flip their marble such that they knock the gray stationary marble 
through the red gate. Fig. 7 shows a diagram illustrating one version of 
the test clip. Players take turns between rounds as to who flips their 
marble first and who second. In each round, the team gets a point if they 
manage to knock the gray marble into the gate. It does not matter which 
of the two players knocks it in. As Fig. 7 shows, there is a horizontal 
barrier next to one of the starting positions (for the green player’s 
marble in this case). Players take turns as to who is assigned the starting 
position close to the barrier. We showed participants a picture of the 
playing field similar to the one in Fig. 7 but without the marble’s motion 
paths. 

After participants had read the instructions, they proceeded to the 
test phase. We asked two test questions in this study, a question about 
difficulty, and a question about blame. The question order was counter
balanced between subjects. Participants in the “blame first” condition 
were first shown a screen with the test video clip. They saw that both the 
green and the blue marble failed to hit the gray marble. The marbles’ 
trajectories are shown in Fig. 7. We also counterbalanced between 
participants (1) whether the green or the blue marble moved first, (2) 
whether the green or the blue marble was positioned at the top, and (3) 
whether the horizontal barrier was positioned at the top or the bottom 
(Fig. 7 shows the configuration in which the barrier was at the top and 
the green marble moved first). 

After participants had watched the clip, they were asked the blame 
test question, which was presented at the bottom of the same screen that 
showed the video clip. The question was introduced by the prompt “As 
you have seen, both the green and the blue player failed to hit the grey 
marble in this round. So, the team didn’t score a point.” The question 
was “Which player is more to blame that the grey marble did not go 
through the gate?”. Ratings were provided on a sliding scale whose 
endpoints were labelled “Definitely the blue player” and “Definitely the 
green player”. The midpoint was labelled “both equally”. On the second 
screen of the test phase, participants were shown a stationary picture of 
the playing field with the following prompt: “Please have a look again at 
the picture below showing the configuration of the playing field and 
then answer the additional question below.” They were then asked the 
difficulty question, which was “For which player is it more difficult to 
knock the gray marble into the gate?”. Ratings were again provided on 
the same sliding scale. In the “difficulty first” condition, the order of 
presentation of the two screens was reversed. After participants pro
vided their responses, they proceeded to a short demographic screen on 
which we also asked them for a brief explanation of their blame 
judgment. 
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5.2. Model predictions 

We generated predictions from the CSM by assuming that people 
mentally simulate how each player could have flipped their marble 
differently in order to knock the gray marble into the gate. Notice that in 
Experiments 1 and 2 the event of interest was clearly specified in the 
because statement (e.g. “Marble B went through the gate because marble 
A didn’t hit it.”). In contrast, in Experiment 3, we asked participants to 
evaluate whose players’ shot was more difficult and who was more to 
blame for the negative outcome. 

How the relevant counterfactual contrast is specified makes a dif
ference here. In the actual situation, both the blue and the green marble 
missed the gray marble. If the counterfactual contrast was what would 
have happened if the green/blue marble had hit the gray marble, then 
there would almost be no difference between the two marbles. For both 
the green and the blue marble, the chances are high that the gray marble 
would have gone through the gate if it had been hit. However, if the 
counterfactual contrast is instead what would have happened if another 
(reasonably good) player had shot the marble instead, then there is a 
clear difference between the two. For the blue marble, it’s easy to 
imagine how a player could have knocked the gray marble into the gate 
with a straight shot. For the green player, whose shot is obstructed by 
the obstacle, it’s less clear how the marble would have needed to be shot 
such that it would have resulted in a successful outcome. So, how the 
counterfactual contrast is specified makes a big difference to the model’s 
prediction. 

To predict participants’ judgments in Experiment 3, the model first 
constructs a space of counterfactual possibilities by considering in which 
direction each marble could have been shot. For Experiment 1, we 
needed to specify three parameters: the time at which the marble is shot, 
the direction in which it is shot, and the magnitude of the shot. This was 
necessary because the setting was dynamic. However, in this experiment 
the setting is static. All marbles are initially stationary. The relevant 
space of counterfactuals can therefore be constructed using a single 
parameter that captures the direction in which a marble is shot.12 

To generate the space of counterfactuals, we used a finely discretized 
grid according to which each marble is flipped at an angle ranging from 
100◦ to 260◦ (90◦ is north, and 180◦ is west). Like in Experiment 1, we 
then selected the subset of cases for which the counterfactual outcome of 
interest would have been realized (i.e. cases in which the gray marble 
was knocked into the gate). This space of possibilities includes situations 
in which the blue/green marble collide several times with the walls 
before knocking the gray marble into the gate. Intuitively, for the blue 
marble in Fig. 7b, a counterfactual comes to mind in which the marble 
would have directly knocked the gray marble into the gate (rather than 

colliding with one or several of the walls before). For the green marble, it 
is impossible to knock the gray marble into the gate without first 
colliding with the walls. The minimum number of wall collisions before 
knocking gray into the gate is two.13 

To generate a counterfactual simulation, the model first uniformly 
samples from one of the cases for which the green (or blue) marble 
would knock the gray marble into the gate, and then applies noise to the 
sampled velocity vector just like in Experiment 1. The model repeats this 
sampling procedure many times for the two candidate causes, and 
counts the proportion of cases for which the outcome in the simulation 
would have been different from what actually happened (see Eq. (1)). 
The model then uses this probability to predict both judgments of dif
ficulty and judgments of blame. The more situations there are in which 
the blue/green marble knocks the gray marble into the gate, the less 
difficult the shot is predicted to be, and the more a player is predicted to 
be blamed for having failed to knock the marble into the gate. 

Note that in the experiment, we asked participants whose shot was 
more difficult and which player was more to blame for the negative 
outcome. To fit participants’ judgments, the model considers the prob
ability that each marble would knock the gray marble into the gate, and 
then transforms these probabilities into a preference for one marble over 
the other via a soft-max decision function (Luce, 1959; Sutton & Barto, 
1998). Because we fitted the temperature parameter in the soft-max 
function, this means that as long as the model’s predictions are in the 
right direction, it will be able to capture participants’ judgment. How
ever, since the model assumes a direct mapping between difficulty and 
blame judgments, it is constrained to predict symmetrical responses to 
these questions. 

To sum up, CSM makes the following predictions about participants’ 
judgments in Experiment 3: 

Hypothesis 3.1. Participants will judge that it will be more difficult 
for the player with the obstacle to hit the gray marble into the goal (i.e. 
the green player in Fig. 7). 

Hypothesis 3.2. When both players failed to hit the gray marble into 
the goal, participants will judge that the player without the obstacle (i.e. 
the blue player in Fig. 7) is more to blame than the player with the 
obstacle. 

Hypothesis 3.3. There will be a direct mapping between participants’ 
difficulty and blame judgments. The easier they thought it was for one 
player compared to the other to hit the gray marble into the goal, the 
more that player should be blamed when the gray marble did not go in. 

Fig. 7. Illustration of the animations used in Experiment 3. a) Green plays first and misses. b) Blue plays second and misses. The position of the barrier, the starting 
position of each player, and which player went first was counterbalanced between participants. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

12 There is no friction in our setting and the collisions are perfectly elastic, so 
the initial speed with which a marble moves does not matter. 

13 Fig. A2 in the appendix shows how the counterfactual probability is affected 
by setting a maximum on the number of wall collisions allowed. Intuitively, 
participants will not consider situations in which a colored marble knocks the 
gray one into the gate after a large number of collisions with the walls. 
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5.3. Results 

Fig. 8 shows participants’ difficulty and blame judgments. As pre
dicted, participants indicated that it was more difficult for the player 
close to the obstacle to knock the gray marble through the gate (i.e. the 
green player in Fig. 7), M = 86.28, SD = 21.84 (Hypothesis 3.1). A 
directed one-sample t-test against the midpoint of the scale was signif
icant, t(103) = 16.94, p < .001, d = 1.66. Conversely, participants 
blamed the player more who had a straight shot (i.e. the blue player in 
Fig. 7) M = 29.04, SD = 20.75 (Hypothesis 3.2). A directed one-sample t- 
test against the midpoint of the scale was significant, t(103) = − 10.30, p 
< .001, d = 1.01. 

There was no effect of question order on difficulty or blame judg
ments (t(102) = 0.05, p = .961 and t(102) = − 1.12, p = .267, respec
tively). The faint lines in Fig. 8 indicate what pair of judgments each 
participant gave. 62 out of 104 participants indicated both that the shot 
is more difficult for the player close to the obstacle and that the player 
far from the obstacle is more to blame. 36 participants considered both 
players equally blameworthy, while only 8 participants considered both 
players’ shots to be equally difficult (treating judgments within the 
range of 45 to 55 as indicating equality). Overall, this suggests that, 
unlike predicted in Hypothesis 3.3, there was no direct mapping be
tween how participants judged difficulty and blame. 

5.4. Discussion 

The results of Experiment 3 show that when multiple potential 
causes failed to bring about an outcome, people blame the player more 
for whom it would have been easier to make the outcome happen. 
Participants judged that scoring is easier for the player who had a direct 
shot at the target compared to the player whose shot was obstructed by 
an obstacle. Correspondingly, when both players failed to score, par
ticipants were inclined to blame the player more who had an easier shot. 

The CSM predicts this pattern by assuming that people mentally 
simulate what would have happened if each player had shot their marble 
differently. Given that the players’ goal is to knock the gray marble into 
the goal, we assume that people are more likely to consider shots that 
involve few rather than many collisions with the walls prior to knocking 

the gray marble into the goal. Given this assumption, there is a greater 
chance that the marble without the obstacle will be successful than the 
marble with the obstacle.14 

The CSM predicts a direct mapping from judgments of difficulty to 
judgments of blame, as it assumes that underlying each judgment is an 
assessment of the probability that a shot should have been successful. 
While this captures the main trends in the data (see the model pre
dictions in Fig. 8), there was also an unanticipated asymmetry. While 
almost all participants agreed that scoring is more difficult for the player 
with the obstacle, a number of participants assigned equal blame to both 
players. Taking a look at the open-ended responses that participants 
provided at the end of the experiment revealed that some participants 
assigned blame in a purely outcome-based manner: Several participants 
stated explicitly that the shot was more difficult for one player, but that 
both players are still equally to blame since they both failed (e.g. “both 
players didn’t knock the grey marble into the goal, equally to blame. but 
blue marble in harder position”).15 In contrast, many other participants 
explained their differential assignment of blame by reference to diffi
culty (e.g. “I thought the green played was more to blame because they 
had an easier path to the grey marble.”). 

Experiment 3 featured a single test clip. As such, it’s not possible to 
rule out alternative hypotheses for how participants may have arrived at 
their judgments. Maybe participants based their judgments directly on 
features of the scene, such as the position of the barrier, or the number of 
times the balls collided, and did not consider counterfactual simulations. 
A challenge for such a feature-based account would be to explain why 
these features should matter for causal judgments. The CSM predicts 
that features like the position of the barrier matter because they affect 
how likely the outcome would have been different in relevant counter
factual simulations. Nevertheless, to rule out feature-based alternative 
accounts, future work needs to test the CSM in a wider variety of 
situations. 

6. General discussion 

In our everyday lives, we often cite things that didn’t happen to 
explain things that did happen. For example, it seems perfectly fine to say 
that our beautiful orchids died because our neighbor did not keep his 
promise to water them while we were away, or that a pandemic led to a 
national disaster because the administration refrained from taking 
appropriate precautionary measures. How do people make causal 
judgments about things that did not happen? 

In this paper, we developed an extension of the counterfactual simu
lation model (CSM) to explain people’s causal judgments about omissions 
(Gerstenberg et al., 2021). The key idea is that people use their intuitive 
domain understanding to mentally simulate what would have happened 
if the omitted event had occurred. People believe that an outcome 
happened because of an omission the more certain they are that the 
outcome would not have happened if the omitted event had occurred. 
People’s causal judgments are affected by their expectations about what 
will happen. According to the CSM, expectations modulate what coun
terfactuals people consider, which in turn affects their causal judgments. 
People are predicted to judge that an omission was more causal when 
the omitted event was expected to happen in a way that would have 
made a difference to the outcome. The results of three experiments 
showed that people’s causal judgments about omissions are consistent 
with the CSM’s predictions. 

We broke the problem of explaining why something happened down 
into four sub-problems. First, the variable selection problem is about what Fig. 8. Experiment 3 results: Participants’ responses to the difficulty question 

(left) and the blame question (right). High ratings indicate a preference for the 
player whose marble was next to the obstacle (see Fig. 7), and low ratings a 
preference for the player without an obstacle. Large red points indicate mean 
judgments with 95% bootstrapped confidence intervals. Large white points 
indicate model predictions. Small black dots indicate individual responses 
(jittered along the x-axis for visibility). Lines connect individual difficulty and 
blame question responses. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

14 Fig. A2 in the Appendix shows the number of successful shots for both 
marbles as a function of how many times each marble collides with one of the 
walls or the obstacle before knocking the gray marble into the goal.  
15 Participants’ explanations may be seen in the analysis file posted online htt 

ps://cicl-stanford.github.io/omission/. 
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variables are considered as candidate causes of the outcome (Halpern & 
Hitchcock, 2011; Woodward, 2015). The selection problem is particu
larly challenging when omissions are allowed to be causes. There are 
many factors that influence what variables come to mind (Branscombe, 
Owen, Garstka, & Coleman, 1996; Byrne, 2016; Mandel, 2003, 2011; 
N’gbala & Branscombe, 1995). In line with prior work, we believe that 
expectations about what normally happens guide people’s selection of 
causes (Hesslow, 1988; Kahneman & Miller, 1986; Kahneman & Tver
sky, 1982; McGrath, 2005) as well as thoughts about what is to be 
learned from what happened, and what one could do to make a differ
ence to the outcome in the future (Gerstenberg & Icard, 2019; Girotto 
et al., 1991; Hitchcock, 2012; Lombrozo, 2016; Phillips et al., 2019). 

Second, the specification problem is about how the variables in the 
model carve up the event space. We focused on situations in which 
variables are binary and denote whether an event happened or did not 
happen. The specification problem is also particularly challenging when 
considering omissions. When an event happened, it is often straight
forward to specify how that event might not have happened. However, 
when an event did not happen, it is less clear what the relevant 
contrastive event should look like (Halpern & Hitchcock, 2015; Schaffer, 
2005, 2010). For example, when Tom shot Steve, it’s easy to consider 
the event of Tom not shooting Steve. However, when Tom did not shoot 
Steve, it’s less clear what one is supposed to imagine the alternative 
event of Tom shooting Steve (since there are many possible ways to 
shoot someone). 

Third, the evaluation problem is about how to simulate the conse
quences of what would have happened if the event of interest had 
occurred (Gerstenberg & Tenenbaum, 2017; Kahneman & Tversky, 
1982). A counterfactual model of causation like the CSM has to specify a 
mechanism that realizes the desired counterfactual, and then simulates 
what the outcome would have been. The CSM assumes that people use 
their intuitive understanding of physics to generate imagined in
terventions on the scene by imparting a force on a candidate causal 
object. 

Finally, the attribution problem arises when there are several candi
date causes and the question is to what extent each of the causes is 
responsible for bringing about the outcome (Gerstenberg & Icard, 2019; 
Gerstenberg & Lagnado, 2010; Icard et al., 2017; Lagnado et al., 2013). 
To address this problem, the CSM evaluates each of the candidate causes 
and then attributes causal responsibility based on how easy it is to 
imagine that a candidate cause could have made a difference to the 
outcome. The ease of bringing about the relevant counterfactual situa
tion in which the outcome would have been changed is affected by ex
pectations that bias the generation of counterfactuals. 

Experiments 1 and 2 looked at how the specification problem and the 
evaluation problem affect judgments of omissive causation. In Experi
ment 1, the CSM addresses the specification problem by considering the 
possible ways in which Marble A could have collided with Marble B. 
How these counterfactuals are generated is affected by the expectations 
that participants have about what would happen. More specifically, the 
CSM models the influence of expectations by varying the degree of noise 
that is introduced into the sampling process of counterfactual simula
tions. The stronger the expectations, the less noise is introduced. As 
predicted by the CSM, Experiment 1 revealed an asymmetry: Marble A’s 
not hitting Marble B was judged less causal when Marble B missed the 
gate compared to when Marble B went through the gate. Adding ex
pectations increased both people’s causal judgments as well as their 
subjective degree of belief that a collision would have changed the 
outcome. This effect was particularly strong when participants had ex
pectations about social agents playing a marbles game. The CSM ex
plains this effect of expectations by assuming that knowledge about 
intentions of agents limits what counterfactuals are considered. Our 
results thus add to previous research indicating that intentional actions 
signal higher causal stability compared to unintentional ones (Heider, 
1958; Lombrozo, 2010), and that causal stability is indeed a relevant 
dimension that affects causal judgment (Grinfeld, Lagnado, Gerstenberg, 

Woodward, & Usher, 2020; Lewis, 1986; Nagel & Stephan, 2016; Vasi
lyeva, Blanchard, & Lombrozo, 2018; Woodward, 2006). 

One potential objection to our interpretation of the results from 
Experiment 1 is that the differences in causal judgments between the 
situations in which the marble went through the gate or missed the gate 
might be merely due to an inherent asymmetry between omissions that 
prevent and omissions that cause. Experiment 2 addressed this concern 
by contrasting causation and prevention in a situation in which the 
specification problem and evaluation problem did not arise. As pre
dicted by the CSM, when it was clear that the outcome would have been 
different in the relevant counterfactual situation, participants’ causal 
judgments were at ceiling for both causation and prevention by 
omission. 

Experiment 3 focused on the attribution problem: how do people 
determine which out of several omissions was most responsible for the 
outcome? The results showed that people attributed more responsibility 
to an omission for which the counterfactual contrast that would have 
resulted in a positive outcome was easier to imagine. Specifically, when 
both players missed their shot in a cooperative two-player marble game, 
the player who had the easier shot was blamed more for the negative 
team outcome. This intuitive result highlights the importance of how the 
relevant counterfactual contrast is specified. In the actual situation, both 
players missed their shot. One way to specify the counterfactual contrast 
would have been to say, if the player’s marble had hit the target marble, 
it would have gone through the gate. This specification, however, would 
not predict a difference between the two players. The target marble is 
positioned right in front of the goal such that it’s almost certain to go 
into the goal if it was struck. Specifying the counterfactual as “if the 
target marble had been hit” would not predict any difference between 
the two players regardless of whether their shot was easy or difficult. 
Instead, participants’ judgments are consistent with the counterfactual 
contrast being specified as “if the player had shot the marble differently” 
(or “if another – reasonably skilled – player had shot the marble”). This 
way, the model can account for the observed results. The probability 
that the outcome would have been positive had the player shot the 
marble differently is greater for the player with the easy shot compared 
to the player with the difficult shot. Future research needs to investigate 
what determines how people construe the relevant counterfactual 
contrasts. 

Our experiments did not address the selection problem. In all of our 
experiments, we explicitly asked participants about the candidate cau
ses. What triggers the search for causal explanations (Hastie, 1984; 
Kanazawa, 1992; Weiner, 1985; Wong & Weiner, 1981), how people 
naturally and spontaneously construct the causal models that support 
such explanations (Hagmayer & Osman, 2012; Lagnado, Waldmann, 
Hagmayer, & Sloman, 2007; Sloman, 2005), and how this 
model-building process is guided by what they know and what their 
goals are (Gerstenberg & Icard, 2019; Hilton, 1990) remain important 
questions for future research. 

In the remainder, we will discuss how the force dynamics model 
(Wolff et al., 2010) and the mental model theory (Khemlani et al., 2018) 
might account for the results of our experiments, what the CSM has to 
say about the actual process by which people are making causal judg
ments about omissions, how our model could be extended to capture 
different causal expressions about what happened, and what our model 
has to say about omissive causation outside of the physical setting. 

6.1. Alternative accounts 

The force dynamics model (Wolff et al., 2010) predicts that omissive 
causation is grounded in the removal of an actual or anticipated force. In 
Experiments 1 and 3, no actual forces are exchanged since the candidate 
marbles either do not move at all (Experiment 1) or they miss the target 
marble (Experiment 3). In Experiment 2, the wall blocks the marble from 
going through the gate in one of the two clips. In this case, there is an 
actual force that prevents the outcome from happening. To account for 
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the rest of the clips, however, the force dynamics model would have to 
rely on the notion of an anticipated force that was not realized. The 
notion of an unrealized anticipated force is of course a counterfactual 
one. In that sense, the CSM and the force dynamics model converge here. 
However, the two accounts still differ with respect to how people’s 
domain knowledge is represented. The force dynamics model uses vec
tor algebra to represent people’s knowledge, whereas the CSM assumes 
that people’s physical knowledge resembles in important ways the 
workings of a physics engine of the kind that are used to model realistic 
physical interactions in computer games (Gerstenberg & Tenenbaum, 
2017; Goodman, Tenenbaum, & Gerstenberg, 2015; Ullman et al., 2017; 
but see also Ludwin-Peery, Bramley, Davis, & Gureckis, 2021). 

In the experiments reported in Wolff et al. (2010), the physical in
teractions play out in 1D, and the specification problem is fairly minimal 
– the relevant counterfactual contrast is the absence of a candidate cause 
(i.e. what would have happened if one of the agents had been removed). 
The evaluation problem is also fairly minimal, although participants 
might be somewhat uncertain about the magnitude of the actual or 
anticipated force vectors which can make a difference to what would 
have happened. It is unclear how the force dynamics model would ac
count for the results of our Experiment 1. For the CSM, the effect that the 
clip has on participants’ judgments follows directly from the evaluation 
problem: it’s more likely that a marble that’s on target would have 
missed the gate if it had been hit, than it is for a marble that originally 
was not on target to have gone through the gate had it been hit. The CSM 
suggests a concrete mechanism for how expectations affect the consid
eration of counterfactuals that the force dynamics model lacks at this 
point. Incorporating expectations is also critical for predicting that one 
player is blamed more than the other for missing the target in Experi
ment 3. 

The mental model theory (Khemlani et al., 2018) predicts that omis
sive causation is grounded in the representation of concrete possibilities. 
“Causing” by omission versus “enabling” by omission are defined in 
terms of a set of logical possibilities that are consistent with each 
concept. Since the model requires the existence of multiple possibilities 
to apply, it is better suited to making predictions about general causal 
relationships rather than particular causal events. In our experiments, 
participants only viewed a single video clip rather than being exposed to 
multiple different clips depicting different possibilities which the mental 
model theory requires for its predictions. 

Neither the force dynamics model nor the mental model theory make 
quantitative predictions. Quantitative predictions are important, how
ever, as they allow for more rigorous tests of the theory. The CSM makes 
quantitative predictions and these predictions have been shown to 
accurately capture participants’ judgments about commissive causes 
(Gerstenberg et al., 2017, 2021). Here, we have shown how participants’ 
judgments about omissive causes are also consistent with the CSM. Our 
experiments were limited in that they only featured a small number of 
situations which precluded a more quantitative analysis of the model 
predictions. For a more stringent test of the model, future work needs to 
manipulate in a more continuous fashion the physical settings of the 
scene as well as participants’ expectations about what will happen. 

6.2. The process of making causal judgments about omissions 

The CSM proposes that people make causal judgments about omis
sions by comparing what actually happened with a mental simulation of 
what would have happened in a counterfactual situation in which the 
event of interest had taken place. Gerstenberg et al. (2017) demon
strated that when participants are asked to make causal judgments about 
commissions, they spontaneously engage in counterfactual simulation as 
evidenced by their eye-movements. Participants do not just look at what 
actually happened, they try to mentally simulate what would have 
happened if the causal event of interest had not taken place. 

Here, we build on this work to suggest a model for how people make 
causal judgments about omissions, and for how expectations shape the 

way in which people consider counterfactual possibilities. In order to 
make these ideas concrete, we had to make a number of implementation 
decisions. Our model generates counterfactual possibilities by first 
sampling a situation in which the counterfactual event of interest would 
have happened, and then somewhat perturbing that sample with noise. 
The model assumes that prior expectations affect how much noise is 
applied to these generated samples (with higher expectations that a 
causal event would have happened resulting in less noise in the coun
terfactual simulations). This is of course not the only way in which the 
idea that expectations affect the generation of counterfactuals could be 
implemented, and we are not strongly committed to the particular 
implementation that we chose. What we are committed to is the more 
general idea that causal judgments about omissions can be understood 
by considering counterfactuals on the generative model of the situation, 
and that expectations affect what counterfactuals are generated. Eye- 
tracking may help to gain more direct insights into what counterfac
tuals people are considering (see Gerstenberg et al., 2017). 

6.3. The language of omissions 

In our experiments, we asked participants to what extent they agreed 
with statements that the outcome happened because of an omission. We 
did not ask participants whether the omission caused the outcome. This 
was a deliberate choice. For example, in Experiment 1, the prompt was 
“Marble B went through the gate, because Marble A did not hit Marble 
B.” We could have also asked participants to judge whether Marble A’s 
not hitting Marble B caused Marble B to go through the gate. Our 
intuition is that while the “because” variant sounds fine and natural, the 
“caused” variant does not. We are not the first to notice this. In fact, 
Beebee (2004) argues that there is a fundamental difference between 
causation (for which “caused” is appropriate) and causal explanations 
(for which “because” is appropriate). In a series of experiments, Liven
good and Machery (2007) find that participants often agree more with 
“because” variants compared to “caused” variants in cases of omissive 
causation. 

For the purposes of this paper, we laid out merely the core of the 
counterfactual simulation model. However, the CSM has also been 
applied to capturing participants’ judgments in scenarios involving 
multiple causes (Gerstenberg et al., 2021). What these scenarios 
revealed is that people’s causal judgments are sensitive to multiple as
pects of causation. People care not only about whether an outcome 
happened but also about how it came about. Traditional counterfactual 
theories of causation focus on whether-causation. They ask the question: 
Did the presence versus absence of the cause make a difference to 
whether or not the outcome happened? However, these theories have 
difficulty accounting for a number of cases in which multiple causes are 
causally relevant for the outcome. For example, consider a simple causal 
chain in which Marble A knocks into Marble B which subsequently 
knocks Marble C into the gate. Intuitively, Marble B was causally rele
vant for Marble C’s going through the gate. But a simple counterfactual 
test fails here: Marble C would have gone through the gate even if 
Marble B had not been present in the scene (because Marble A would 
have knocked Marble C into the gate in this case). 

The CSM accounts for cases like these by postulating another aspect 
of causation: how-causation. How-causation is revealed through a 
different counterfactual test. Rather than considering what would have 
happened if the cause had been present versus absent, for how-causation 
the CSM considers what would have happened if the candidate cause 
had been subtly changed. Concretely, one might imagine this change as 
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a small perturbation to the marble’s position. A candidate cause is a 
how-cause if it’s the case that the outcome would have been different 
had the cause been changed.16 So, in the causal chain, Marble B is not a 
whether-cause of Marble C’s going through the gate but it is a how-cause 
(whereas Marble A is both a how-cause and a whether-cause). 

We believe that considering these different aspects of causation may 
help to explain why “because” but not “caused” statements are appro
priate for omissions. Omissions can be whether-causes. As shown in our 
experiments, the absence versus the presence of the cause makes a dif
ference to whether or not the outcome happened. However, omissions 
cannot be how-causes. The idea of considering how an omission could 
have been slightly different from how it actually happened is arguably 
ill-defined. Non-events do not have a spatio-temporal signature. They do 
not happen in space or time (Bernstein, 2015; Lewis, 2000, 2004), and so 
we cannot consider how these non-events could have happened slightly 
differently from how they actually did (not). 

The difference between the “because” and “caused” statements 
might thus lie in what requirements the candidate cause needs to fulfill. 
For “because” statements, it seems sufficient that the candidate cause 
was a whether-cause of the outcome, whereas for “caused” statements 
the candidate should be both a whether-cause and a how-cause of the 
outcome. In fact, Beller, Bennett, and Gerstenberg (2020) have shown in 
recent work that the different aspects of causation help explain differ
ences between causal expressions such as “caused”, “enabled”, 
“affected” and “made no difference”. In this work, participants watched 
video clips of physical interactions similar to the ones we used here, and 
were asked to choose which expression best describes what happened. 
Beller et al. propose a literal semantics of the different causal expressions 
using the CSM’s aspects of causation and show that for participants’ 
interpretation of “caused” both how-causation and whether-causation is 
critical, whereas for “enabled” whether-causation matters, and for 
“affected” how-causation is important. In future work, we will investi
gate what causal expressions people use to describe situations of omis
sion (cf. Khemlani et al., 2018). 

6.4. Omissions beyond the physical 

In this paper, we applied the counterfactual simulation model to 
predict participants’ judgments about omissions in relatively simple 
physical settings. By restricting ourselves to this well-defined setting, we 
were able to postulate a concrete mechanism of how people may 
generate counterfactual simulations, and of how prior expectations in
fluence the consideration of counterfactuals. 

However, people regularly make causal judgments in situations that 
are much more complex, with limited information, and where it would 
be impossible to mentally simulate exactly how certain counterfactuals 
might play out. We mentioned the example of a pandemic leading to a 
national disaster because the administration refrained from taking 
appropriate precautionary measures. Our intuition is that people can 
still make causal judgments in complex situations like these because 
they have the ability to construct mental models that abstract away 
many of the low-level details of the situation (see Beckers & Halpern, 
2019; Ullman et al., 2017). So instead of mentally simulating what ac
tions each person would have taken, one would need to abstract away 
from this low level, and then consider the counterfactual dependence 
between the variables of interest on a higher level of abstraction. 

As our introductory example demonstrates, omissions are particu
larly relevant in human interaction, especially in morally or legally 
charged situations where we have clear expectations about what a 

person should have done. For example, in bystander situations we hold 
people morally responsible for not acting when they should have (Darley 
& Latané, 1968; Fischer et al., 2011). What, if anything, can the model 
we propose here say about people’s causal judgments outside of the 
physical domain? 

We believe in the power of the general idea that causal judgments are 
well-understood in terms of counterfactual operations defined over 
generative models of the domain (Gerstenberg et al., 2021; Gerstenberg 
& Tenenbaum, 2017). People’s domain understanding will dictate both 
what counterfactuals come to mind, as well as how to simulate what 
would have happened had things played out differently. As we have seen 
in Experiment 3, evaluating agents’ actions requires different counter
factuals from considering merely physical events. Participants’ blame 
judgments where consistent with the assumption that they are imag
ining what a reasonable person would have done in the same situation. 
The person for whom it’s easier to imagine that they could have suc
ceeded is blamed more. Relatedly, Jara-Ettinger et al. (2015) have 
shown that even toddlers already evaluate an agent who refused to help 
more negatively when helping would have been easy. 

The reasonable person test is a common procedure in the law to 
evaluate legal responsibility in cases of negligence, in which harm 
resulted from a person’s failure to act (Gerstenberg et al., 2018; Green, 
1967). Much work in moral psychology (Clarke, 1994; DeScioli, Bru
ening, & Kurzban, 2011; Royzman & Baron, 2002; Waldmann, Nagel, & 
Wiegmann, 2012) and decision-making (Anderson, 2003; Baron & 
Ritov, 1994, 2004; Byrne, 2005, 2016; Ritov & Baron, 1992; Spranca, 
Minsk, & Baron, 1991; Zeelenberg, Van den Bos, Van Dijk, & Pieters, 
2002) has shown that people make different judgments about and draw 
different inferences from omissions versus commissions. For example, 
Greene et al. (2009) showed that people were less likely to consider a 
person’s action morally acceptable when it directly impacted the victim 
(e.g. via pushing) compared to when there was no physical contact (cf. 
De Freitas & Alvarez, 2018; Iliev, Sachdeva, & Medin, 2012; Sosa, Ull
man, Tenenbaum, Gershman, & Gerstenberg, 2021). This finding is 
consistent with the idea that, all else being equal, actions strike us as 
more causal than non-actions because for actions there is less uncer
tainty about what the relevant contrast is. More research is required into 
the factors that influence what counterfactuals come to mind, and how 
these counterfactuals in turn may influence causal judgments, moral 
evaluations, and decisions. By developing computational models of how 
people make decisions and take actions, and by combining these models 
with general tools for doing counterfactual inference (e.g. Evans, 
Stuhlmüller, Salvatier, & Filan, 2017; Perov et al., 2020; Tavares, Kop
pel, Zhang, & Solar-Lezama, 2019), we will be able to build and test 
models that make quantitative predictions about causal judgments 
outside of the physical domain we considered here. 

7. Conclusion 

Omissions have a complicated causal status. How can something that 
did not happen be the cause of something else happening? Much prior 
work has argued for the role of mental simulation in causal judgments 
(e.g. Goldvarg & Johnson-Laird, 2001; Kahneman & Tversky, 1982), and 
for the idea that people’s beliefs about what is normal affect their causal 
judgments via shaping what counterfactuals come to mind (e.g. Hilton & 
Slugoski, 1986; Hitchcock & Knobe, 2009; Icard et al., 2017; Kahneman 
& Miller, 1986; Kominsky & Phillips, 2019). In this paper, we have 
presented the first concrete implementation of these ideas for handling 
causal judgments about omissions in a physical domain. The counter
factual simulation model (CSM) predicts that people compare what 
actually happened with what would have happened in a simulated 
counterfactual simulation (see also Gerstenberg et al., 2021), and that 
prior expectations influence how these counterfactual simulations are 
generated. 

16 Note that for how-causation the outcome event is construed finely as a 
continuous variable that includes information about when and where the event 
happened, whereas for whether-causation the outcome event is construed 
coarsely as a binary variable that merely represents whether or not the outcome 
happened (e.g. whether the marble went through the gate or missed it). 
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Appendix A

Fig. A1. Experiment 1 model results: Each point indicates the probability that the outcome would have been different from what actually happened for different 
amount of noise applied to marble A’s initial trajectory. The blue points are for the clip in which marble B actually missed the gate, and the red points are for the clip 
in which marble B actually went through the gate. Each point is based on 1000 simulated model runs. For each run, the model first uniformly samples a case in which 
marble A was shot in a way such that the counterfactual outcome was different from what actually happened (e.g. such that marble B would have gone through the 
gate when it actually missed). The model then applies noise to that velocity vector, and records the outcome of the simulation. When the noise is very small, the 
outcome would almost always be different from what actually happened no matter whether marble B originally missed or went through the gate. However, as the 
noise increases, the probabilities of the relevant counterfactual for the two situations separate. The probability that the counterfactual outcome would have been 
different from what actually happened decreases more rapidly for “missed” compared to “went through’ ‘as the noise level increases. This indicates that making 
marble B miss (when it originally went through) is more robust to noise, than making marble B go through (when it originally missed). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A2. Number of successful shots for the marble without the obstacle (blue), and the marble with the obstacle (green), as a function of how many collisions 
happened before the marble knocked the gray marble into the gate (x-axis). For the marble without the obstacle, there are many more successful shots for a low 
number of collisions. For the marble with the obstacle, it needs at least two collisions with the walls before it can knock the gray marble into the gate. While there are 
in fact an almost equal number of shots that would be successful for both the marble with and without the obstacle overall, it’s plausible to assume that participants 
have a tendency to simulate paths with lower number of collisions for which the marble without the obstacle is more likely to generate successful outcomes. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

References 

Achinstein, P. (1983). The nature of explanation. Oxford University Press.  
Anderson, C. J. (2003). The psychology of doing nothing: Forms of decision avoidance 

result from reason and emotion. Psychological Bulletin, 129(1), 139–167. 

Baron, J., & Ritov, I. (1994). Reference points and omission bias. Organizational Behavior 
and Human Decision Processes, 59(3), 475–498. 

Baron, J., & Ritov, I. (2004). Omission bias, individual differences, and normality. 
Organizational Behavior and Human Decision Processes, 94(2), 74–85. 

Beckers, S., & Halpern, J. Y. (2019). Abstracting causal models. In Proceedings of the AAAI 
conference on artificial intelligence, Vol. 33 (pp. 2678–2685). 

T. Gerstenberg and S. Stephan                                                                                                                                                                                                               

http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0005
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0010
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0010
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0015
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0015
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0020
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0020
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0025
http://refhub.elsevier.com/S0010-0277(21)00261-4/sbref0025


Cognition 216 (2021) 104842

19

Beebee, H. (2004). Causing and nothingness. In J. Collins, N. Hall, & L. A. Paul (Eds.), 
Causation and counterfactuals (pp. 291–308). MA: MIT Press Cambridge.  

Beller, A., Bennett, E., & Gerstenberg, T. (2020). The language of causation. In 
Proceedings of the 42nd annual conference of the cognitive science society. 

Bello, P., & Khemlani, S. S. (2015). A model-based theory of omissive causation. In 
R. Dale, et al. (Eds.), Proceedings of the 37th annual conference of the cognitive science 
society. Austin, TX: Cognitive Science Society.  

Bernstein, S. (2014). Omissions as possibilities. Philosophical Studies, 167(1), 1–23. 
Bernstein, S. (2015). The metaphysics of omissions. Philosophy Compass, 10(3), 208–218. 
Bohner, G., Bless, H., Schwarz, N., & Strack, F. (1988). What triggers causal attributions?. 

The impact of valence and subjective probability. European Journal of Social 
Psychology, 18(4), 335–345. 

Branscombe, N. R., Owen, S., Garstka, T. A., & Coleman, J. (1996). Rape and accident 
counterfactuals: Who might have done otherwise and would it have changed the 
outcome?.1. Journal of Applied Social Psychology, 26(12), 1042–1067. 

Byrne, R. M. (2016). Counterfactual thought. Annual Review of Psychology, 67, 135–157. 
Byrne, R. M. J. (2005). The rational imagination: How people create alternatives to reality. 

MIT Press.  
Clarke, R. (1994). Ability and responsibility for omissions. Philosophical Studies, 73(2), 

195–208. 
Clarke, R., Shepherd, J., Stigall, J., Waller, R. R., & Zarpentine, C. (2015). Causation, 

norms, and omissions: A study of causal judgments. Philosophical Psychology, 28(2), 
279–293. 

Collins, J. (2000). Preemptive prevention. The Journal of Philosophy, 97(4), 223. 
Danks, D. (2017). Singular causation. In M. Waldmannn (Ed.), The oxford handbook of 

causal reasoning (pp. 201–215). Oxford University Press.  
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