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Abstract

We investigate how language models assign responsibility to collaborators. We1

instruct 10 large language models from three different companies to assign respon-2

sibility to agents in a collaborative task. We then compare the language models’3

responses to seven existing cognitive models of responsibility attribution. We find4

that, while humans use actual and counterfactual effort to assign responsibility to5

collaborators, LLMs primarily use force, and this divergence shows up asymmet-6

rically, when evaluating collaboration failures rather than successes. Our results7

highlight the similarities and differences between LLMs and humans in responsi-8

bility attributions and demonstrate the promise of interpreting LLM behavior using9

cognitive theories.10

1 Introduction11

As large language models (LLMs) become increasingly involved in collaborations with humans in day-12

to-day work [1–4], it is important to understand how the these systems reason about collaborations.13

Prior work evaluating social reasoning in LLMs has primarily focused on theory of mind abilities14

using experiments such as false belief tasks, where two agents have different beliefs about the15

world [5, 6]. [7] argue that such evaluations may measure the behavioral abilities of LLMs, but16

without describing the computations underlying those abilities. And while theory of mind research17

typically focuses on understanding an individual’s belief states, much of humans’ complex social18

reasoning involves people working in teams, where success depends not only an agent’s individual19

contribution, but also on other people’s contributions. Here, we evaluate the algorithms underlying20

LLMs’ behavior on this key aspect of social reasoning—responsibility attribution in teams—by21

leveraging experimental paradigms, empirical data, and cognitive models adopted from previous22

studies on human social cognition. Our approach opens up new avenues for evaluating social23

reasoning in LLMs by examining responsibility attributions in collaboration, and in particular, for24

understanding the algorithms driving these behaviors.25

We adapted materials from recent work on human responsibility judgment [8], instructing LLMs to26

attribute responsibility to agents in a collaborative task (Fig. 1A). We compared LLM responses to27

human responses and seven cognitive models. To test the generality of our findings, and whether28

LLM behaviors change as a function of model scale, we examined 10 LLMs, from three different29

companies and with varying numbers of parameters. We found that, while humans use actual and30

counterfactual effort to assign responsibility to collaborators, LLMs primarily use force, and this31

divergence particularly shows up when evaluating failed collaborations. With increasing model scale,32

the LLMs’ behavior becomes increasingly correlated with humans’, but the cognitive model that33
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Actual contribution

Focal agent’s actual properties:


1. force

2. strength

3. effort

Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

Counterfactual contribution

How much effort could have 

been exerted by:

4. focal agent

5. non-focal agent

6. both

Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

7. Ensemble model

(A) (B)

How much is each contestant to be blamed/credited for the team’s loss/victory? 
(0 = no blame/credit, 10 = very high blame/credit)

Assigns responsibility to         based on ___

Failure Success

Exp 1: How much is each contestant to be blamed/credited 
for the team’s loss/victory?

Exp 2: How much bonus do you want to give each contestant?

Contestant A1
Strength: 5
Effort: 20%

Force: 1

Contestant B1
Strength: 5
Effort: 60%

Force: 3

Contestant A2
Strength: 5
Effort: 70%
Force: 3.5

Contestant B2
Strength: 5
Effort: 20%

Force: 1

Weight: 5 and
Weight: 5

Figure 1: (A) Human experiment stimuli, adapted from [8]. Experiment 2a and converted into a
text-only prompt format for LLMs. (B) Summary of the seven cognitive models we use to evaluate
LLMs, see Appendix A for further details.

best explains these behaviors is consistently different. Our results highlight both similarities and34

differences between LLMs and humans in responsibility attributions, and demonstrate the promise of35

utilizing theories and models from human social cognition to interpret LLM behaviors.36

2 Measuring responsibility attribution in collaborative contexts37

Responsibility attributions in humans A large body of research in human social cognition has38

highlighted several factors that shape how people assign responsibility. The theories largely fall39

under two styles of reasoning [9]. One style of reasoning emphasizes a person’s actual contributions40

to the outcome. For example, the amount of force a person exerts (how much output they actually41

contributed) [10–12], or their effort (how hard they tried) [13–16]. In general, those who contribute42

more force or effort are more responsible for the outcome they produce.43

Another style of reasoning points to the role of counterfactual contributions—how much a person44

could have contributed—and whether acting differently would have changed the outcome [17]. On45

this view, the same actual contributions can yield different responsibility judgments depending on46

contextual factors such as task structure (e.g., whether success of a group requires everyone or just47

one teammate) [18], the temporal sequence of contributions (e.g., an action is more causally relevant48

when it happens at the right time) [19], and the availability of alternative options (e.g., whether49

someone can be easily replaced) [20].50

These factors are not mutually exclusive. Recent computational work finds that responsibility51

attributions in collaborative contexts are best explained by a dual-factor model that considers both52

how much effort people actually contributed and how much they could have contributed [8]. We build53

directly on this work by adapting its materials and modeling framework to evaluate whether LLMs54

exhibit similar patterns in responsibility judgments. Because this prior study explicitly modeled the55

contributions of force, actual effort, and counterfactual effort, it provides a comprehensive testbed56

for comparison. By applying the same paradigm to LLMs, we can ask whether these models exhibit57

human-like sensitivity to the factors that guide responsibility judgments in collaborative settings.58

Below, we describe the experimental paradigm and cognitive models borrowed from [8].59

Experimental Paradigm In the experiments, participants viewed vignettes where pairs of agents60

attempted to lift a box together (Figure 1A). Participants observed each agent’s strength, effort, and61

force, as well as the weight of the box. Strength is defined as the maximum force an agent is capable62

of exerting, if they exert an all-out effort. Effort indicates how hard they try, i.e., the proportion of63

strength applied to the task. Trying the best one could exerts 100% effort, whereas not trying at all64

exerts 0% effort. Force is a result of applying effort—an agent produces force equal to their strength65

multiplied by effort. The agents succeed when their combined force exceeds the box weight (i.e.,66

combined force ≥ box weight). After seeing whether the agents succeeded, participants assigned67

credit (when the lift was successful) or blame (when it failed) to each agent.68

Cognitive Models In the analyses below, we compare LLM responses on this task to seven cognitive69

models to examine if they are driven by the same factors that drive human responses (Figure 1B). The70

cognitive models include three actual-contribution models that assign responsibility based on the71

agent’s actual property (actual force, strength, and effort), three counterfactual-contribution models72

2
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Figure 2: Comparing human and LLM responses to seven cognitive models. x-axis: Pearson
correlation coefficients when the collaboration failed. y-axis: Pearson correlation coefficients
when the collaboration succeeded. Dashed lines indicate the border between positive and negative
correlations. Points falling closer to the top right indicate better models for explaining the data.
Overall, LLMs responses are best captured by the Force model, while human responses are best
described by the Ensemble model.

that assign responsibility based on how much effort the agent and their partner could have exerted,73

and an ensemble model that combines the best actual-contribution model and the best counterfactual-74

contribution model, which has been shown to outperform the single-factor models in capturing human75

responsibility judgments [8]. See Appendix A for more details.76

3 Experiments77

We converted experiment instructions and questions to a long-form text format, without images, and78

used it to prompt LLMs. Each prompt specified the strength, effort, and force of each contestant, the79

weight of the box, and whether the agents successfully lifted it. Each prompt ended with a question:80

“How much is each contestant to be blamed for the team’s loss/victory?”. The LLMs were instructed81

to reply with a number between 0 and 10 indicating how much blame or credit they would assign to82

each agent (0 meant no blame/credit, 10 meant very high blame/credit). In order to ask about both83

agents, referred to as “Contestant A” and “Contestant B”, we instructed the LLMs to evaluate a single84

agent (A or B) at a time. We also flipped the order of A and B to avoid ordering bias. As a result,85

every scenario was prompted 4 times: two agents × two orderings.86

We tested three LLMs available in the OpenAI API: gpt-4o-mini-2024-07-18,87

gpt-4o-2024-11-20, and gpt-4-0125-preview, as well as six open-source LLMs, including four88

from Meta: Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, Llama-3.3-70B-Instruct,89

Llama-3.1-405B-Instruct, and two from Alibaba Cloud: Qwen2.5-7B-Instruct and90

Qwen2.5-72B-Instruct. While OpenAI’s model details are not publicly available, GPT-4 is pre-91

sumed to have the most parameters of the three LLMs. GPT-4o and GPT-4o-mini are comparatively92

newer, have fewer parameters, and are multi-modal (language and vision). GPT-4o-mini is smaller93

than GPT-4o and also less capable. We used the OpenAI and TogetherAI APIs due to the availability94

of token logit probabilities (‘logprobs’), which reduced the cost of our experiments. Token logit95

probabilities are the likelihood that the LLM would have generated each possible next token—in our96

case, integers from 0 to 10, e.g. p(‘5’) or p(‘10’). We aggregated these into a weighted average over97

integers; for example, if a response was 40% ‘5’ and 60% ‘10’, the response would be coded as 40%98

× 5 + 60% × 10 = 8. These weighted averages were used as the LLM responses in our analyses.99

4 Results100

LLM responses are best explained by force Figure 2 shows the correlations between LLM101

responses and each of the seven cognitive models when the collaboration fails (x-axis) or succeeds102

(y-axis). Higher correlations indicate closer alignment in response patterns. A good model should be103
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Figure 3: Correlations between LLM responses and the Force model, Ensemble model, and human
judgments. LLMs are grouped by company and ordered by reported parameter count (e.g., 7B = 7
billion), which reflects model size and approximate computational power. The y-axis shows Pearson
correlations between each model and the three benchmarks. Larger models tend to show stronger
alignment with human and both the Force and Ensemble model predictions, although the Force model
still dominates in most cases.

able to explain both failures and successes, thus, points that fall closer to the top right indicate better104

models for explaining the responses. The majority of the LLMs were best explained by the Force105

model, including three openAI models and all four Llama models we tested. GPT-3.5 and Qwen2.5-106

7B did not positively correlate with any cognitive models. Qwen2.5-72B was indistinguishably107

correlated with the Force model and the Ensemble model, and neither of the two models can explain108

failures. The correlation coefficients are reported in Appendix B. While LLM responses are primarily109

driven by force, human responses (Figure 2, top-right panel) are primarily driven by the ensemble110

model which considers actual and counterfactual effort.111

More powerful LLMs are more correlated with humans, but still shows force bias Figure 3112

shows correlations between LLMs and the Force model, Ensemble model, and human judgments,113

grouped by developing company and ordered by reported parameter count. Overall, there are more114

significant changes with evaluating failures, compared to evaluating successes. Within each model115

family, from left to right, as the number of parameters increase, all three correlations tend to increase116

for evaluating failed collaborations (left panel). This shows that increasing the number of parameters117

brings the LLM responses closer to humans. However, the Force model remains dominant in most118

cases, except for the two Qwen models, which are marginally better explained by the Ensemble model.119

By contrast, for success trials (right panel) correlations with human data and cognitive models are120

consistently high across LLMs from different companies and with different numbers of parameters.121

5 Discussion122

We compared LLMs’ responsibility attributions to seven cognitive models and found that LLMs’123

responses were best captured by the Force model, which evaluates collaborators based on how much124

they actually contributed. By contrast, humans evaluated collaborators based on their actual and125

counterfactual effort [8]. We also discovered a progression trend: as the number of parameters126

increase, the LLM responses overall are more correlated with human judgments. The responses are127

increasingly correlated with both the Force model (which best describes LLM responses) and the128

Ensemble model (which best describes human responses), but the Force model remains dominant,129

indicating a persistent bias towards judging responsibility by force.130

Success-failure asymmetry reveals differential counterfactual reasoning Interestingly, the131

divergence between human and LLM responses centers on interpreting failure. As shown in Figure 2132

and highlighted in Figure 3, all LLMs—even including the earlier GPT-3.5 model or Llama and133

Qwen models with less than 10 billion parameters—were quite good at explaining what causes a134

team to succeed. The biggest change with increasing parameters seems to appear for evaluating135

what causes a team to fail. This may indicate an asymmetry in LLMs’ ability to reason about136

counterfactuals for failures (i.e., whether exerting more effort could change the outcome to a success)137

versus counterfactuals for successes (i.e., whether exerting less effort could change the outcome138

to a failure). This pattern aligns with past work showing that LLMs learn more efficiently from139

4



better-than-expected outcomes than from worse-than-expected ones [21], suggesting a possible shared140

mechanism with our domain.141

Taken together, these results contribute to our understanding of how LLMs diverge from humans in142

evaluating collaborators, and highlight the exciting opportunity for cognitive-theory-driven research143

in language models to shed light on aligning natural and artificial minds not only in responses, but144

also in reasoning, and ultimately, to improve collaboration between humans and machines.145
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A Cognitive Models206

The cognitive models assign responsibility (blame B in the event of failure, and credit C in the207

event of success) to one of the two agents—the focal agent, denoted as a—at a time, by considering208

different factors. Three of them are actual-contribution models that base their decisions only on209

the focal agent’s actual contributions (Force, Strength, and Effort models). Three of them are210

counterfactual-contribution models that base their decisions on counterfactual judgments about how211

much effort the focal agent and their partner—the non-focal agent, denoted as /a—could have212

contributed (Focal-agent-only, Non-focal-agent-only, and Both-agent counterfactual models). The213

last one is an Ensemble model that averages the Effort model and the Both-agent counterfactual214

model. The Ensemble model has been shown to outperform the other six models in capturing human215

responsibility judgments [8].216

In the experiments, each box has a weight W ∈ [1,10], and each agent a has a strength Sa ∈ [1,10]217

defined as the maximum amount of force that they could exert. Each agent exerts a level of effort218

Ea ∈ [0,1], defined as a fraction of their strength, and produces force Fa ∈ [0,Sa], defined as their219

strength times their effort (Fa = EaSa). The agents succeed when their combined force exceeds the220

box weight (∑a Fa ≥W ), and fail otherwise (∑a Fa <W ).221

A.1 Actual-contribution models222

Force model (F). The Force model allocates responsibility based on how much force an agent223

produces in the event. Agents who exert more force are blamed less and credited more.224

BF
a ∝ Fmax −Fa

CF
a ∝ Fa

(1)

Strength model (S). The Strength model allocates responsibility based on an agent’s strength.225

Stronger agents receive more credit for successes, and receive more blame for failures.226

BS
a ∝ Sa

CS
a ∝ Sa

(2)

Effort model (E). The Effort model allocates responsibility based on the level of effort an agent227

exerts. Agents who exert more effort are credited more, and blamed less.228

BE
a ∝ Emax −Ea

CE
a ∝ Ea

(3)

A.2 Counterfactual-contribution models229

Central to the counterfactual-contribution models is the concept of difference making [22]: whether230

the outcome could have been different if the agents had exerted a different level of effort E ′. Inspired231

by prior work [23], here we consider directional counterfactuals (upward for failures, downward232

for successes). In other words, when agents fail, we consider what would have happened if they233

exerted more effort; when agents succeed, we consider what would have happened if they exerted less234

effort.1 Specifically, we consider counterfactual efforts drawn from discrete uniform distributions235

in increments of 0.01, where E ′ ∈ (E,1] when agents fail and E ′ ∈ [0,E) when agents succeed. The236

responsibility an agent receives hinge on the probability that they or their partner could have changed237

the outcome.238

Each agent’s probability of changing the outcome is defined as:239

Pa =

{
∑E ′

a
P(E ′

a) I[E ′
aSa +F/a <W ] if L = 1

∑E ′
a

P(E ′
a) I[E ′

aSa +F/a ≥W ] if L = 0,
(4)

1Past work has proposed other ways of constructing counterfactuals; for example, [24] proposed a noisy
model of Newtonian physics that samples counterfactuals from a Gaussian distribution centered on what actually
happened. Note that here we are not making a strong claim about how counterfactuals are constructed.
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where I[·] is an indicator function that returns 1 if its argument is true, and 0 otherwise. The term F/a240

denotes the force of the group excluding the contribution of agent a.241

Focal-agent-only counterfactual model (FA). The Focal-agent-only counterfactual model only242

considers counterfactual actions on the part of the focal agent. The model assigns responsibility based243

on the likelihood of the focal agent changing the outcome by altering their effort allocation, while244

holding the non-focal agent’s effort allocation fixed.245

BFA
a ∝ Pa

CFA
a ∝ Pa

(5)

In other words, if the focal agent could have easily changed the outcome, they would get more credit246

in the event of success, and more blame in the event of failure.247

Non-focal-agent-only counterfactual model (NFA). The Non-focal-agent-only counterfactual model248

only considers counterfactual actions of the non-focal agent. If the non-focal agent could have easily249

changed the outcome, the focal agent would get less credit in the event of success, and less blame in250

the event of failure.251

BNFA
a ∝ 1−P/a

CNFA
a ∝ 1−P/a

(6)

Both-agent counterfactual model (BA). The both-agent counterfactual model considers coun-252

terfactual actions of both the focal agent and the non-focal agent by averaging the predictions of253

the Focal-agent-only model and the Non-focal-agent-only model. As in [8, 25], we assign equal254

weighting to the two components for simplicity.255

BBA
a ∝ (BFA

a +BNFA
a )/2

CBA
a ∝ (CFA

a +CNFA
a )/2

(7)

In doing so, this model considers both factors within the focal agent’s control (what they themselves256

could have done differently) and factors outside their control (what their partner could have done257

differently).258

A.3 Ensemble model (EBA)259

The last model is an Ensemble model that combines the Effort model (E) and the Both-agent260

counterfactual model (BA), hence the acronym EBA. The Ensemble model was designed to address261

the insufficiency of the six models above in explaining human responsibility judgments. Theoretically,262

its two components can have different weights; however, past work has found that the two models have263

similar weights in human responsibility judgments [8]. Here, we stick with the same equal-weighting264

Ensemble model to be consistent with past work and avoid adding free parameters to the model.265

BEBA
a ∝ (BE

a +BBA
a )/2

CEBA
a ∝ (CE

a +CBA
a )/2

(8)
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B Correlations between LLMs and cognitive models266

We report the correlations between each LLM and the seven cognitive models, visualized in Figure 2.267

Table 1: Correlations between GPT-family LLMs and cognitive models.
LLM Cognitive Model Failure Correlation Success Correlation

GPT-3.5

Force -0.38 0.90
Strength -0.05 0.56
Effort -0.45 0.57
Focal-agent counterfactual 0.03 0.16
Non-focal-agent counterfactual -0.18 0.50
Both-agent counterfactual -0.11 0.78
Ensemble -0.33 0.75

GPT-4o-mini

Force 0.35 0.80
Strength -0.38 0.41
Effort 0.09 0.58
Focal-agent counterfactual -0.54 0.18
Non-focal-agent counterfactual 0.13 0.49
Both-agent counterfactual -0.33 0.79
Ensemble -0.13 0.76

GPT-4o

Force 0.70 0.58
Strength -0.34 0.38
Effort 0.39 0.40
Focal-agent counterfactual -0.23 0.38
Non-focal-agent counterfactual 0.18 0.23
Both-agent counterfactual -0.04 0.72
Ensemble 0.21 0.61

GPT-4

Force 0.71 0.82
Strength -0.33 0.41
Effort 0.49 0.62
Focal-agent counterfactual -0.05 0.18
Non-focal-agent counterfactual 0.17 0.51
Both-agent counterfactual 0.10 0.80
Ensemble 0.34 0.79
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Table 2: Correlations between Llama-family LLMs and cognitive models.
LLM Cognitive Model Failure Correlation Success Correlation

Llama-3.1-8B

Force 0.32 0.80
Strength -0.54 0.41
Effort -0.09 0.56
Focal-agent counterfactual -0.30 0.19
Non-focal-agent counterfactual -0.22 0.48
Both-agent counterfactual -0.42 0.79
Ensemble -0.29 0.75

Llama-3.1-70B

Force 0.73 0.77
Strength -0.44 0.38
Effort 0.40 0.59
Focal-agent counterfactual -0.03 0.25
Non-focal-agent counterfactual 0.06 0.44
Both-agent counterfactual 0.03 0.80
Ensemble 0.25 0.77

Llama-3.3-70B

Force 0.49 0.66
Strength -0.13 0.33
Effort 0.38 0.53
Focal-agent counterfactual -0.02 0.18
Non-focal-agent counterfactual 0.21 0.41
Both-agent counterfactual 0.15 0.69
Ensemble 0.30 0.68

Llama-3.1-405B

Force 0.62 0.79
Strength -0.25 0.30
Effort 0.44 0.66
Focal-agent counterfactual 0.15 0.33
Non-focal-agent counterfactual 0.12 0.36
Both-agent counterfactual 0.21 0.81
Ensemble 0.38 0.82

Table 3: Correlations between Qwen-family LLMs and cognitive models.
LLM Cognitive Model Failure Correlation Success Correlation

Qwen2.5-7B

Force -0.78 0.85
Strength 0.13 0.43
Effort -0.70 0.64
Focal-agent counterfactual 0.06 0.20
Non-focal-agent counterfactual -0.26 0.47
Both-agent counterfactual -0.16 0.79
Ensemble -0.49 0.80

Qwen2.5-72B

Force 0.41 0.85
Strength 0.04 0.31
Effort 0.45 0.72
Focal-agent counterfactual -0.05 0.18
Non-focal-agent counterfactual 0.43 0.47
Both-agent counterfactual 0.30 0.77
Ensemble 0.43 0.85
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