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Abstract

We investigate how language models assign responsibility to collaborators. We
instruct 10 large language models from three different companies to assign respon-
sibility to agents in a collaborative task. We then compare the language models’
responses to seven existing cognitive models of responsibility attribution. We find
that, while humans use actual and counterfactual effort to assign responsibility to
collaborators, LLMs primarily use force, and this divergence shows up asymmet-
rically, when evaluating collaboration failures rather than successes. Our results
highlight the similarities and differences between LLMs and humans in responsi-
bility attributions and demonstrate the promise of interpreting LLM behavior using
cognitive theories.

1 Introduction

As large language models (LLMs) become increasingly involved in collaborations with humans in day-
to-day work [1-4], it is important to understand how the these systems reason about collaborations.
Prior work evaluating social reasoning in LLMs has primarily focused on theory of mind abilities
using experiments such as false belief tasks, where two agents have different beliefs about the
world [5, 6]. [7] argue that such evaluations may measure the behavioral abilities of LLMs, but
without describing the computations underlying those abilities. And while theory of mind research
typically focuses on understanding an individual’s belief states, much of humans’ complex social
reasoning involves people working in teams, where success depends not only an agent’s individual
contribution, but also on other people’s contributions. Here, we evaluate the algorithms underlying
LLMs’ behavior on this key aspect of social reasoning—responsibility attribution in teams—by
leveraging experimental paradigms, empirical data, and cognitive models adopted from previous
studies on human social cognition. Our approach opens up new avenues for evaluating social
reasoning in LLMs by examining responsibility attributions in collaboration, and in particular, for
understanding the algorithms driving these behaviors.

We adapted materials from recent work on human responsibility judgment [8], instructing LLMs to
attribute responsibility to agents in a collaborative task (Fig. 1A). We compared LLM responses to
human responses and seven cognitive models. To test the generality of our findings, and whether
LLM behaviors change as a function of model scale, we examined 10 LLMs, from three different
companies and with varying numbers of parameters. We found that, while humans use actual and
counterfactual effort to assign responsibility to collaborators, LLMs primarily use force, and this
divergence particularly shows up when evaluating failed collaborations. With increasing model scale,
the LLMs’ behavior becomes increasingly correlated with humans’, but the cognitive model that
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Figure 1: (A) Human experiment stimuli, adapted from [8]. Experiment 2a and converted into a
text-only prompt format for LLMs. (B) Summary of the seven cognitive models we use to evaluate
LLMs, see Appendix A for further details.

best explains these behaviors is consistently different. Our results highlight both similarities and
differences between LLMs and humans in responsibility attributions, and demonstrate the promise of
utilizing theories and models from human social cognition to interpret LLM behaviors.

2 Measuring responsibility attribution in collaborative contexts

Responsibility attributions in humans A large body of research in human social cognition has
highlighted several factors that shape how people assign responsibility. The theories largely fall
under two styles of reasoning [9]. One style of reasoning emphasizes a person’s actual contributions
to the outcome. For example, the amount of force a person exerts (how much output they actually
contributed) [10-12], or their effort (how hard they tried) [13—16]. In general, those who contribute
more force or effort are more responsible for the outcome they produce.

Another style of reasoning points to the role of counterfactual contributions—how much a person
could have contributed—and whether acting differently would have changed the outcome [17]. On
this view, the same actual contributions can yield different responsibility judgments depending on
contextual factors such as task structure (e.g., whether success of a group requires everyone or just
one teammate) [18], the temporal sequence of contributions (e.g., an action is more causally relevant
when it happens at the right time) [19], and the availability of alternative options (e.g., whether
someone can be easily replaced) [20].

These factors are not mutually exclusive. Recent computational work finds that responsibility
attributions in collaborative contexts are best explained by a dual-factor model that considers both
how much effort people actually contributed and how much they could have contributed [8]. We build
directly on this work by adapting its materials and modeling framework to evaluate whether LLMs
exhibit similar patterns in responsibility judgments. Because this prior study explicitly modeled the
contributions of force, actual effort, and counterfactual effort, it provides a comprehensive testbed
for comparison. By applying the same paradigm to LLMs, we can ask whether these models exhibit
human-like sensitivity to the factors that guide responsibility judgments in collaborative settings.
Below, we describe the experimental paradigm and cognitive models borrowed from [8].

Experimental Paradigm In the experiments, participants viewed vignettes where pairs of agents
attempted to lift a box together (Figure 1A). Participants observed each agent’s strength, effort, and
force, as well as the weight of the box. Strength is defined as the maximum force an agent is capable
of exerting, if they exert an all-out effort. Effort indicates how hard they try, i.e., the proportion of
strength applied to the task. Trying the best one could exerts 100% effort, whereas not trying at all
exerts 0% effort. Force is a result of applying effort—an agent produces force equal to their strength
multiplied by effort. The agents succeed when their combined force exceeds the box weight (i.e.,
combined force > box weight). After seeing whether the agents succeeded, participants assigned
credit (when the lift was successful) or blame (when it failed) to each agent.

Cognitive Models In the analyses below, we compare LLM responses on this task to seven cognitive
models to examine if they are driven by the same factors that drive human responses (Figure 1B). The
cognitive models include three actual-contribution models that assign responsibility based on the
agent’s actual property (actual force, strength, and effort), three counterfactual-contribution models
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Figure 2: Comparing human and LLM responses to seven cognitive models. x-axis: Pearson
correlation coefficients when the collaboration failed. y-axis: Pearson correlation coefficients
when the collaboration succeeded. Dashed lines indicate the border between positive and negative
correlations. Points falling closer to the top right indicate better models for explaining the data.
Overall, LLMs responses are best captured by the Force model, while human responses are best
described by the Ensemble model.

that assign responsibility based on how much effort the agent and their partner could have exerted,
and an ensemble model that combines the best actual-contribution model and the best counterfactual-
contribution model, which has been shown to outperform the single-factor models in capturing human
responsibility judgments [8]. See Appendix A for more details.

3 Experiments

We converted experiment instructions and questions to a long-form text format, without images, and
used it to prompt LLMs. Each prompt specified the strength, effort, and force of each contestant, the
weight of the box, and whether the agents successfully lifted it. Each prompt ended with a question:
“How much is each contestant to be blamed for the team’s loss/victory?”. The LLMs were instructed
to reply with a number between 0 and 10 indicating how much blame or credit they would assign to
each agent (0 meant no blame/credit, 10 meant very high blame/credit). In order to ask about both
agents, referred to as “Contestant A” and “Contestant B”, we instructed the LLMs to evaluate a single
agent (A or B) at a time. We also flipped the order of A and B to avoid ordering bias. As a result,
every scenario was prompted 4 times: two agents X two orderings.

We tested three LLMs available in the OpenAl APIL: gpt-40-mini-2024-07-18,
gpt-40-2024-11-20, and gpt-4-0125-preview, as well as six open-source LLMs, including four
from Meta: Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, Llama-3.3-70B-Instruct,
Llama-3.1-405B-Instruct, and two from Alibaba Cloud: Qwen2.5-7B-Instruct and
Qwen2.5-72B-Instruct. While OpenAl’s model details are not publicly available, GPT-4 is pre-
sumed to have the most parameters of the three LLMs. GPT-40 and GPT-40-mini are comparatively
newer, have fewer parameters, and are multi-modal (language and vision). GPT-4o0-mini is smaller
than GPT-40 and also less capable. We used the OpenAl and TogetherAl APIs due to the availability
of token logit probabilities (‘logprobs’), which reduced the cost of our experiments. Token logit
probabilities are the likelihood that the LLM would have generated each possible next token—in our
case, integers from 0 to 10, e.g. p(‘5”) or p(‘10”). We aggregated these into a weighted average over
integers; for example, if a response was 40% ‘5’ and 60% ‘10’, the response would be coded as 40%
X 5+ 60% x 10 = 8. These weighted averages were used as the LLM responses in our analyses.

4 Results

LLM responses are best explained by force Figure 2 shows the correlations between LLM
responses and each of the seven cognitive models when the collaboration fails (x-axis) or succeeds
(y-axis). Higher correlations indicate closer alignment in response patterns. A good model should be
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Figure 3: Correlations between LLM responses and the Force model, Ensemble model, and human
judgments. LLMs are grouped by company and ordered by reported parameter count (e.g., 7B =7
billion), which reflects model size and approximate computational power. The y-axis shows Pearson
correlations between each model and the three benchmarks. Larger models tend to show stronger
alignment with human and both the Force and Ensemble model predictions, although the Force model
still dominates in most cases.

able to explain both failures and successes, thus, points that fall closer to the top right indicate better
models for explaining the responses. The majority of the LLMs were best explained by the Force
model, including three openAl models and all four Llama models we tested. GPT-3.5 and Qwen2.5-
7B did not positively correlate with any cognitive models. Qwen2.5-72B was indistinguishably
correlated with the Force model and the Ensemble model, and neither of the two models can explain
failures. The correlation coefficients are reported in Appendix B. While LLM responses are primarily
driven by force, human responses (Figure 2, top-right panel) are primarily driven by the ensemble
model which considers actual and counterfactual effort.

More powerful LLMs are more correlated with humans, but still shows force bias Figure 3
shows correlations between LLMs and the Force model, Ensemble model, and human judgments,
grouped by developing company and ordered by reported parameter count. Overall, there are more
significant changes with evaluating failures, compared to evaluating successes. Within each model
family, from left to right, as the number of parameters increase, all three correlations tend to increase
for evaluating failed collaborations (left panel). This shows that increasing the number of parameters
brings the LLM responses closer to humans. However, the Force model remains dominant in most
cases, except for the two Qwen models, which are marginally better explained by the Ensemble model.
By contrast, for success trials (right panel) correlations with human data and cognitive models are
consistently high across LLMs from different companies and with different numbers of parameters.

5 Discussion

We compared LLMs’ responsibility attributions to seven cognitive models and found that LLMs’
responses were best captured by the Force model, which evaluates collaborators based on how much
they actually contributed. By contrast, humans evaluated collaborators based on their actual and
counterfactual effort [8]. We also discovered a progression trend: as the number of parameters
increase, the LLM responses overall are more correlated with human judgments. The responses are
increasingly correlated with both the Force model (which best describes LLM responses) and the
Ensemble model (which best describes human responses), but the Force model remains dominant,
indicating a persistent bias towards judging responsibility by force.

Success-failure asymmetry reveals differential counterfactual reasoning Interestingly, the
divergence between human and LLM responses centers on interpreting failure. As shown in Figure 2
and highlighted in Figure 3, all LLMs—even including the earlier GPT-3.5 model or Llama and
Qwen models with less than 10 billion parameters—were quite good at explaining what causes a
team to succeed. The biggest change with increasing parameters seems to appear for evaluating
what causes a team to fail. This may indicate an asymmetry in LLMs’ ability to reason about
counterfactuals for failures (i.e., whether exerting more effort could change the outcome to a success)
versus counterfactuals for successes (i.e., whether exerting /ess effort could change the outcome
to a failure). This pattern aligns with past work showing that LLMs learn more efficiently from
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better-than-expected outcomes than from worse-than-expected ones [21], suggesting a possible shared
mechanism with our domain.

Taken together, these results contribute to our understanding of how LLMs diverge from humans in
evaluating collaborators, and highlight the exciting opportunity for cognitive-theory-driven research
in language models to shed light on aligning natural and artificial minds not only in responses, but
also in reasoning, and ultimately, to improve collaboration between humans and machines.

References

[1] A Shaji George and AS Hovan George. A review of chatgpt ai’s impact on several business
sectors. Partners universal international innovation journal, 1(1):9-23, 2023.

[2] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[3] Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human
evaluations? arXiv preprint arXiv:2305.01937, 2023.

[4] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt.
ACM Transactions on Software Engineering and Methodology, 33(7):1-38, 2024.

[5] Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuhui Zhou, Yejin Choi, Yoav Goldberg,
Maarten Sap, and Vered Shwartz. Clever hans or neural theory of mind? stress testing social
reasoning in large language models. arXiv preprint arXiv:2305.14763, 2023.

[6] James WA Strachan, Dalila Albergo, Giulia Borghini, Oriana Pansardi, Eugenio Scaliti, Saurabh
Gupta, Krati Saxena, Alessandro Rufo, Stefano Panzeri, Guido Manzi, et al. Testing theory of
mind in large language models and humans. Nature Human Behaviour, pages 1-11, 2024.

[7] Jennifer Hu, Felix Sosa, and Tomer Ullman. Re-evaluating theory of mind evaluation in large
language models. Philosophical Transactions B, 380(1932):20230499, 2025.

[8] Yang Xiang, Jenna Landy, Fiery A Cushman, Natalia Vélez, and Samuel J Gershman. Actual and
counterfactual effort contribute to responsibility attributions in collaborative tasks. Cognition,
241:105609, 2023.

[9] Ned Hall. Two concepts of causation. Collins, Hall, and Paul, 2004.

[10] Phillip Wolff. Representing causation. Journal of experimental psychology: General, 136(1):
82-111, 2007.

[11] Joshua D Greene, Fiery A Cushman, Lisa E Stewart, Kelly Lowenberg, Leigh E Nystrom, and
Jonathan D Cohen. Pushing moral buttons: The interaction between personal force and intention
in moral judgment. Cognition, 111(3):364-371, 2009.

[12] Jonas Nagel and Michael Waldman. Force dynamics as a basis for moral intuitions. In
Proceedings of the annual meeting of the cognitive science society, volume 34, 2012.

[13] Yochanan E Bigman and Maya Tamir. The road to heaven is paved with effort: Perceived effort
amplifies moral judgment. Journal of experimental psychology: general, 145(12):1654, 2016.

[14] Julian Jara-Ettinger, Nathaniel Kim, Paul Muetener, and Laura Schulz. Running to do evil:
Costs incurred by perpetrators affect moral judgment. In Proceedings of the annual meeting of
the cognitive science society, volume 36, 2014.

[15] Felix A Sosa, Tomer Ullman, Joshua B Tenenbaum, Samuel J Gershman, and Tobias Gersten-
berg. Moral dynamics: Grounding moral judgment in intuitive physics and intuitive psychology.
Cognition, 217:104890, 2021.

[16] Bernard Weiner. On sin versus sickness: A theory of perceived responsibility and social
motivation. American psychologist, 48(9):957, 1993.



185
186

187
188

189

191
192

193
194

196

197
198
199

200
201
202

203
204
205

[17] Tobias Gerstenberg. Counterfactual simulation in causal cognition. Trends in Cognitive Sciences,
2024.

[18] Tobias Gerstenberg and David A Lagnado. Spreading the blame: The allocation of responsibility
amongst multiple agents. Cognition, 115(1):166-171, 2010.

[19] Tobias Gerstenberg and David A Lagnado. When contributions make a difference: Explaining
order effects in responsibility attribution. Psychonomic Bulletin & Review, 19:729-736, 2012.

[20] Sarah A Wu and Tobias Gerstenberg. If not me, then who? responsibility and replacement.
Cognition, 242:105646, 2024.

[21] Johannes A Schubert, Akshay K Jagadish, Marcel Binz, and Eric Schulz. In-context learning
agents are asymmetric belief updaters. arXiv preprint arXiv:2402.03969, 2024.

[22] Thomas F Icard, Jonathan F Kominsky, and Joshua Knobe. Normality and actual causal strength.
Cognition, 161:80-93, 2017.

[23] Lawrence J Sanna and Kandi Jo Turley. Antecedents to spontaneous counterfactual thinking:
Effects of expectancy violation and outcome valence. Personality and Social Psychology
Bulletin, 22(9):906-919, 1996.

[24] Tobias Gerstenberg, Noah D. Goodman, David A. Lagnado, and Joshua B. Tenenbaum. A
counterfactual simulation model of causal judgments for physical events. Psychological Review,
128(6):936-975, 2021.

[25] Yang Xiang, Jenna Landy, Fiery A Cushman, Natalia Vélez, and Samuel J Gershman. People
reward others based on their willingness to exert effort. Journal of Experimental Social
Psychology, 116:104699, 2025.



206

207
208
209
210
211
212
213
214
215
216

217
218
219
220
221

222

223
224

225
226

227
228

229

230
231
232
233
234
235
236
237
238

239

A Cognitive Models

The cognitive models assign responsibility (blame B in the event of failure, and credit C in the
event of success) to one of the two agents—the focal agent, denoted as a—at a time, by considering
different factors. Three of them are actual-contribution models that base their decisions only on
the focal agent’s actual contributions (Force, Strength, and Effort models). Three of them are
counterfactual-contribution models that base their decisions on counterfactual judgments about how
much effort the focal agent and their partner—the non-focal agent, denoted as /a—could have
contributed (Focal-agent-only, Non-focal-agent-only, and Both-agent counterfactual models). The
last one is an Ensemble model that averages the Effort model and the Both-agent counterfactual
model. The Ensemble model has been shown to outperform the other six models in capturing human
responsibility judgments [8].

In the experiments, each box has a weight W € [1,10], and each agent a has a strength S, € [1, 10]
defined as the maximum amount of force that they could exert. Each agent exerts a level of effort
E, € [0,1], defined as a fraction of their strength, and produces force F, € [0,S,], defined as their
strength times their effort (F, = E,S,). The agents succeed when their combined force exceeds the
box weight (Y, F;, > W), and fail otherwise (}_, F, < W).

A.1 Actual-contribution models

Force model (F). The Force model allocates responsibility based on how much force an agent
produces in the event. Agents who exert more force are blamed less and credited more.

Bg“Fmax_Fa

ey
cl < F,

Strength model (S). The Strength model allocates responsibility based on an agent’s strength.
Stronger agents receive more credit for successes, and receive more blame for failures.

B S,

@)

CSec S,
Effort model (E). The Effort model allocates responsibility based on the level of effort an agent
exerts. Agents who exert more effort are credited more, and blamed less.

BaE o< Eppax — Eq4

3)
Ct=<E,

A.2 Counterfactual-contribution models

Central to the counterfactual-contribution models is the concept of difference making [22]: whether
the outcome could have been different if the agents had exerted a different level of effort E’. Inspired
by prior work [23], here we consider directional counterfactuals (upward for failures, downward
for successes). In other words, when agents fail, we consider what would have happened if they
exerted more effort; when agents succeed, we consider what would have happened if they exerted less
effort.! Specifically, we consider counterfactual efforts drawn from discrete uniform distributions
in increments of 0.01, where E’ € (E, 1] when agents fail and E’ € [0, E) when agents succeed. The
responsibility an agent receives hinge on the probability that they or their partner could have changed
the outcome.

Each agent’s probability of changing the outcome is defined as:

B {ZEZP(E;) I[E,S,+Fjg <W] ifL=1 @

Yy P(EL) TELSa+Fjy > W) ifL=0,

I'Past work has proposed other ways of constructing counterfactuals; for example, [24] proposed a noisy
model of Newtonian physics that samples counterfactuals from a Gaussian distribution centered on what actually
happened. Note that here we are not making a strong claim about how counterfactuals are constructed.
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where I[-] is an indicator function that returns 1 if its argument is true, and 0 otherwise. The term F),
denotes the force of the group excluding the contribution of agent a.

Focal-agent-only counterfactual model (FA). The Focal-agent-only counterfactual model only
considers counterfactual actions on the part of the focal agent. The model assigns responsibility based
on the likelihood of the focal agent changing the outcome by altering their effort allocation, while
holding the non-focal agent’s effort allocation fixed.

B < p,

Ci < P,

&)

In other words, if the focal agent could have easily changed the outcome, they would get more credit
in the event of success, and more blame in the event of failure.

Non-focal-agent-only counterfactual model (NFA). The Non-focal-agent-only counterfactual model
only considers counterfactual actions of the non-focal agent. If the non-focal agent could have easily
changed the outcome, the focal agent would get less credit in the event of success, and less blame in

the event of failure.
B < 1-P,

(6)

Y e 1Py,
Both-agent counterfactual model (BA). The both-agent counterfactual model considers coun-
terfactual actions of both the focal agent and the non-focal agent by averaging the predictions of
the Focal-agent-only model and the Non-focal-agent-only model. As in [8, 25], we assign equal
weighting to the two components for simplicity.

B o (B0 1 BY) /2

(N
o (€I 2

In doing so, this model considers both factors within the focal agent’s control (what they themselves
could have done differently) and factors outside their control (what their partner could have done
differently).

A.3 Ensemble model (EBA)

The last model is an Ensemble model that combines the Effort model (E) and the Both-agent
counterfactual model (BA), hence the acronym EBA. The Ensemble model was designed to address
the insufficiency of the six models above in explaining human responsibility judgments. Theoretically,
its two components can have different weights; however, past work has found that the two models have
similar weights in human responsibility judgments [8]. Here, we stick with the same equal-weighting
Ensemble model to be consistent with past work and avoid adding free parameters to the model.

B o< (B; +Bg") /2

®)
CE e (CE )2



s B Correlations between LLMs and cognitive models

267 We report the correlations between each LLM and the seven cognitive models, visualized in Figure 2.

Table 1: Correlations between GPT-family LLMs and cognitive models.

LLM Cognitive Model Failure Correlation ~ Success Correlation
Force -0.38 0.90
Strength -0.05 0.56
Effort -0.45 0.57
GPT-3.5 Focal-agent counterfactual 0.03 0.16
Non-focal-agent counterfactual -0.18 0.50
Both-agent counterfactual -0.11 0.78
Ensemble -0.33 0.75
Force 0.35 0.80
Strength -0.38 0.41
Effort 0.09 0.58
GPT-40-mini  Focal-agent counterfactual -0.54 0.18
Non-focal-agent counterfactual 0.13 0.49
Both-agent counterfactual -0.33 0.79
Ensemble -0.13 0.76
Force 0.70 0.58
Strength -0.34 0.38
Effort 0.39 0.40
GPT-40 Focal-agent counterfactual -0.23 0.38
Non-focal-agent counterfactual 0.18 0.23
Both-agent counterfactual -0.04 0.72
Ensemble 0.21 0.61
Force 0.71 0.82
Strength -0.33 0.41
Effort 0.49 0.62
GPT-4 Focal-agent counterfactual -0.05 0.18
Non-focal-agent counterfactual 0.17 0.51
Both-agent counterfactual 0.10 0.80
Ensemble 0.34 0.79




Table 2: Correlations between Llama-family LLMs and cognitive models.

LLM Cognitive Model Failure Correlation  Success Correlation
Force 0.32 0.80
Strength -0.54 0.41
Effort -0.09 0.56
Llama-3.1-8B Focal-agent counterfactual -0.30 0.19
Non-focal-agent counterfactual -0.22 0.48
Both-agent counterfactual -0.42 0.79
Ensemble -0.29 0.75
Force 0.73 0.77
Strength -0.44 0.38
Effort 0.40 0.59
Llama-3.1-70B  Focal-agent counterfactual -0.03 0.25
Non-focal-agent counterfactual 0.06 0.44
Both-agent counterfactual 0.03 0.80
Ensemble 0.25 0.77
Force 0.49 0.66
Strength -0.13 0.33
Effort 0.38 0.53
Llama-3.3-70B  Focal-agent counterfactual -0.02 0.18
Non-focal-agent counterfactual 0.21 0.41
Both-agent counterfactual 0.15 0.69
Ensemble 0.30 0.68
Force 0.62 0.79
Strength -0.25 0.30
Effort 0.44 0.66
Llama-3.1-405B  Focal-agent counterfactual 0.15 0.33
Non-focal-agent counterfactual 0.12 0.36
Both-agent counterfactual 0.21 0.81
Ensemble 0.38 0.82

Table 3: Correlations between Qwen-family LLMs and cognitive models.

LLM Cognitive Model Failure Correlation  Success Correlation
Force -0.78 0.85
Strength 0.13 0.43
Effort -0.70 0.64

Qwen2.5-7B  Focal-agent counterfactual 0.06 0.20
Non-focal-agent counterfactual -0.26 0.47
Both-agent counterfactual -0.16 0.79
Ensemble -0.49 0.80
Force 0.41 0.85
Strength 0.04 0.31
Effort 0.45 0.72

Qwen2.5-72B  Focal-agent counterfactual -0.05 0.18
Non-focal-agent counterfactual 0.43 0.47
Both-agent counterfactual 0.30 0.77
Ensemble 0.43 0.85
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